Metamath Proof Explorer


Theorem cats1cat

Description: Closure of concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016)

Ref Expression
Hypotheses cats1cld.1 𝑇 = ( 𝑆 ++ ⟨“ 𝑋 ”⟩ )
cats1cat.2 𝐴 ∈ Word V
cats1cat.3 𝑆 ∈ Word V
cats1cat.4 𝐶 = ( 𝐵 ++ ⟨“ 𝑋 ”⟩ )
cats1cat.5 𝐵 = ( 𝐴 ++ 𝑆 )
Assertion cats1cat 𝐶 = ( 𝐴 ++ 𝑇 )

Proof

Step Hyp Ref Expression
1 cats1cld.1 𝑇 = ( 𝑆 ++ ⟨“ 𝑋 ”⟩ )
2 cats1cat.2 𝐴 ∈ Word V
3 cats1cat.3 𝑆 ∈ Word V
4 cats1cat.4 𝐶 = ( 𝐵 ++ ⟨“ 𝑋 ”⟩ )
5 cats1cat.5 𝐵 = ( 𝐴 ++ 𝑆 )
6 5 oveq1i ( 𝐵 ++ ⟨“ 𝑋 ”⟩ ) = ( ( 𝐴 ++ 𝑆 ) ++ ⟨“ 𝑋 ”⟩ )
7 s1cli ⟨“ 𝑋 ”⟩ ∈ Word V
8 ccatass ( ( 𝐴 ∈ Word V ∧ 𝑆 ∈ Word V ∧ ⟨“ 𝑋 ”⟩ ∈ Word V ) → ( ( 𝐴 ++ 𝑆 ) ++ ⟨“ 𝑋 ”⟩ ) = ( 𝐴 ++ ( 𝑆 ++ ⟨“ 𝑋 ”⟩ ) ) )
9 2 3 7 8 mp3an ( ( 𝐴 ++ 𝑆 ) ++ ⟨“ 𝑋 ”⟩ ) = ( 𝐴 ++ ( 𝑆 ++ ⟨“ 𝑋 ”⟩ ) )
10 6 9 eqtri ( 𝐵 ++ ⟨“ 𝑋 ”⟩ ) = ( 𝐴 ++ ( 𝑆 ++ ⟨“ 𝑋 ”⟩ ) )
11 1 oveq2i ( 𝐴 ++ 𝑇 ) = ( 𝐴 ++ ( 𝑆 ++ ⟨“ 𝑋 ”⟩ ) )
12 10 4 11 3eqtr4i 𝐶 = ( 𝐴 ++ 𝑇 )