Metamath Proof Explorer


Theorem cats1cld

Description: Closure of concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016)

Ref Expression
Hypotheses cats1cld.1 𝑇 = ( 𝑆 ++ ⟨“ 𝑋 ”⟩ )
cats1cld.2 ( 𝜑𝑆 ∈ Word 𝐴 )
cats1cld.3 ( 𝜑𝑋𝐴 )
Assertion cats1cld ( 𝜑𝑇 ∈ Word 𝐴 )

Proof

Step Hyp Ref Expression
1 cats1cld.1 𝑇 = ( 𝑆 ++ ⟨“ 𝑋 ”⟩ )
2 cats1cld.2 ( 𝜑𝑆 ∈ Word 𝐴 )
3 cats1cld.3 ( 𝜑𝑋𝐴 )
4 3 s1cld ( 𝜑 → ⟨“ 𝑋 ”⟩ ∈ Word 𝐴 )
5 ccatcl ( ( 𝑆 ∈ Word 𝐴 ∧ ⟨“ 𝑋 ”⟩ ∈ Word 𝐴 ) → ( 𝑆 ++ ⟨“ 𝑋 ”⟩ ) ∈ Word 𝐴 )
6 2 4 5 syl2anc ( 𝜑 → ( 𝑆 ++ ⟨“ 𝑋 ”⟩ ) ∈ Word 𝐴 )
7 1 6 eqeltrid ( 𝜑𝑇 ∈ Word 𝐴 )