Metamath Proof Explorer
Description: Closure of concatenation with a singleton word. (Contributed by Mario
Carneiro, 26-Feb-2016)
|
|
Ref |
Expression |
|
Hypotheses |
cats1cld.1 |
⊢ 𝑇 = ( 𝑆 ++ 〈“ 𝑋 ”〉 ) |
|
|
cats1cli.2 |
⊢ 𝑆 ∈ Word V |
|
Assertion |
cats1cli |
⊢ 𝑇 ∈ Word V |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cats1cld.1 |
⊢ 𝑇 = ( 𝑆 ++ 〈“ 𝑋 ”〉 ) |
| 2 |
|
cats1cli.2 |
⊢ 𝑆 ∈ Word V |
| 3 |
|
s1cli |
⊢ 〈“ 𝑋 ”〉 ∈ Word V |
| 4 |
|
ccatcl |
⊢ ( ( 𝑆 ∈ Word V ∧ 〈“ 𝑋 ”〉 ∈ Word V ) → ( 𝑆 ++ 〈“ 𝑋 ”〉 ) ∈ Word V ) |
| 5 |
2 3 4
|
mp2an |
⊢ ( 𝑆 ++ 〈“ 𝑋 ”〉 ) ∈ Word V |
| 6 |
1 5
|
eqeltri |
⊢ 𝑇 ∈ Word V |