Step |
Hyp |
Ref |
Expression |
1 |
|
cats1cld.1 |
⊢ 𝑇 = ( 𝑆 ++ 〈“ 𝑋 ”〉 ) |
2 |
|
cats1cli.2 |
⊢ 𝑆 ∈ Word V |
3 |
|
cats1fvn.3 |
⊢ ( ♯ ‘ 𝑆 ) = 𝑀 |
4 |
|
cats1fv.4 |
⊢ ( 𝑌 ∈ 𝑉 → ( 𝑆 ‘ 𝑁 ) = 𝑌 ) |
5 |
|
cats1fv.5 |
⊢ 𝑁 ∈ ℕ0 |
6 |
|
cats1fv.6 |
⊢ 𝑁 < 𝑀 |
7 |
1
|
fveq1i |
⊢ ( 𝑇 ‘ 𝑁 ) = ( ( 𝑆 ++ 〈“ 𝑋 ”〉 ) ‘ 𝑁 ) |
8 |
|
s1cli |
⊢ 〈“ 𝑋 ”〉 ∈ Word V |
9 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
10 |
5 9
|
eleqtri |
⊢ 𝑁 ∈ ( ℤ≥ ‘ 0 ) |
11 |
|
lencl |
⊢ ( 𝑆 ∈ Word V → ( ♯ ‘ 𝑆 ) ∈ ℕ0 ) |
12 |
|
nn0z |
⊢ ( ( ♯ ‘ 𝑆 ) ∈ ℕ0 → ( ♯ ‘ 𝑆 ) ∈ ℤ ) |
13 |
2 11 12
|
mp2b |
⊢ ( ♯ ‘ 𝑆 ) ∈ ℤ |
14 |
6 3
|
breqtrri |
⊢ 𝑁 < ( ♯ ‘ 𝑆 ) |
15 |
|
elfzo2 |
⊢ ( 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ↔ ( 𝑁 ∈ ( ℤ≥ ‘ 0 ) ∧ ( ♯ ‘ 𝑆 ) ∈ ℤ ∧ 𝑁 < ( ♯ ‘ 𝑆 ) ) ) |
16 |
10 13 14 15
|
mpbir3an |
⊢ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) |
17 |
|
ccatval1 |
⊢ ( ( 𝑆 ∈ Word V ∧ 〈“ 𝑋 ”〉 ∈ Word V ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) → ( ( 𝑆 ++ 〈“ 𝑋 ”〉 ) ‘ 𝑁 ) = ( 𝑆 ‘ 𝑁 ) ) |
18 |
2 8 16 17
|
mp3an |
⊢ ( ( 𝑆 ++ 〈“ 𝑋 ”〉 ) ‘ 𝑁 ) = ( 𝑆 ‘ 𝑁 ) |
19 |
7 18
|
eqtri |
⊢ ( 𝑇 ‘ 𝑁 ) = ( 𝑆 ‘ 𝑁 ) |
20 |
19 4
|
eqtrid |
⊢ ( 𝑌 ∈ 𝑉 → ( 𝑇 ‘ 𝑁 ) = 𝑌 ) |