Step |
Hyp |
Ref |
Expression |
1 |
|
ccatws1cl |
⊢ ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 ++ 〈“ 𝐵 ”〉 ) ∈ Word 𝑋 ) |
2 |
|
wrdf |
⊢ ( ( 𝐴 ++ 〈“ 𝐵 ”〉 ) ∈ Word 𝑋 → ( 𝐴 ++ 〈“ 𝐵 ”〉 ) : ( 0 ..^ ( ♯ ‘ ( 𝐴 ++ 〈“ 𝐵 ”〉 ) ) ) ⟶ 𝑋 ) |
3 |
1 2
|
syl |
⊢ ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 ++ 〈“ 𝐵 ”〉 ) : ( 0 ..^ ( ♯ ‘ ( 𝐴 ++ 〈“ 𝐵 ”〉 ) ) ) ⟶ 𝑋 ) |
4 |
|
ccatws1len |
⊢ ( 𝐴 ∈ Word 𝑋 → ( ♯ ‘ ( 𝐴 ++ 〈“ 𝐵 ”〉 ) ) = ( ( ♯ ‘ 𝐴 ) + 1 ) ) |
5 |
4
|
oveq2d |
⊢ ( 𝐴 ∈ Word 𝑋 → ( 0 ..^ ( ♯ ‘ ( 𝐴 ++ 〈“ 𝐵 ”〉 ) ) ) = ( 0 ..^ ( ( ♯ ‘ 𝐴 ) + 1 ) ) ) |
6 |
|
lencl |
⊢ ( 𝐴 ∈ Word 𝑋 → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
7 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
8 |
6 7
|
eleqtrdi |
⊢ ( 𝐴 ∈ Word 𝑋 → ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 0 ) ) |
9 |
|
fzosplitsn |
⊢ ( ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 0 ) → ( 0 ..^ ( ( ♯ ‘ 𝐴 ) + 1 ) ) = ( ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ∪ { ( ♯ ‘ 𝐴 ) } ) ) |
10 |
8 9
|
syl |
⊢ ( 𝐴 ∈ Word 𝑋 → ( 0 ..^ ( ( ♯ ‘ 𝐴 ) + 1 ) ) = ( ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ∪ { ( ♯ ‘ 𝐴 ) } ) ) |
11 |
5 10
|
eqtrd |
⊢ ( 𝐴 ∈ Word 𝑋 → ( 0 ..^ ( ♯ ‘ ( 𝐴 ++ 〈“ 𝐵 ”〉 ) ) ) = ( ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ∪ { ( ♯ ‘ 𝐴 ) } ) ) |
12 |
11
|
adantr |
⊢ ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 0 ..^ ( ♯ ‘ ( 𝐴 ++ 〈“ 𝐵 ”〉 ) ) ) = ( ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ∪ { ( ♯ ‘ 𝐴 ) } ) ) |
13 |
12
|
feq2d |
⊢ ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 ++ 〈“ 𝐵 ”〉 ) : ( 0 ..^ ( ♯ ‘ ( 𝐴 ++ 〈“ 𝐵 ”〉 ) ) ) ⟶ 𝑋 ↔ ( 𝐴 ++ 〈“ 𝐵 ”〉 ) : ( ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ∪ { ( ♯ ‘ 𝐴 ) } ) ⟶ 𝑋 ) ) |
14 |
3 13
|
mpbid |
⊢ ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 ++ 〈“ 𝐵 ”〉 ) : ( ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ∪ { ( ♯ ‘ 𝐴 ) } ) ⟶ 𝑋 ) |
15 |
14
|
ffnd |
⊢ ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 ++ 〈“ 𝐵 ”〉 ) Fn ( ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ∪ { ( ♯ ‘ 𝐴 ) } ) ) |
16 |
|
wrdf |
⊢ ( 𝐴 ∈ Word 𝑋 → 𝐴 : ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ⟶ 𝑋 ) |
17 |
16
|
adantr |
⊢ ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝐴 : ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ⟶ 𝑋 ) |
18 |
|
eqid |
⊢ { 〈 ( ♯ ‘ 𝐴 ) , 𝐵 〉 } = { 〈 ( ♯ ‘ 𝐴 ) , 𝐵 〉 } |
19 |
|
fsng |
⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 ∧ 𝐵 ∈ 𝑋 ) → ( { 〈 ( ♯ ‘ 𝐴 ) , 𝐵 〉 } : { ( ♯ ‘ 𝐴 ) } ⟶ { 𝐵 } ↔ { 〈 ( ♯ ‘ 𝐴 ) , 𝐵 〉 } = { 〈 ( ♯ ‘ 𝐴 ) , 𝐵 〉 } ) ) |
20 |
18 19
|
mpbiri |
⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 ∧ 𝐵 ∈ 𝑋 ) → { 〈 ( ♯ ‘ 𝐴 ) , 𝐵 〉 } : { ( ♯ ‘ 𝐴 ) } ⟶ { 𝐵 } ) |
21 |
6 20
|
sylan |
⊢ ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ 𝑋 ) → { 〈 ( ♯ ‘ 𝐴 ) , 𝐵 〉 } : { ( ♯ ‘ 𝐴 ) } ⟶ { 𝐵 } ) |
22 |
|
fzodisjsn |
⊢ ( ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ∩ { ( ♯ ‘ 𝐴 ) } ) = ∅ |
23 |
22
|
a1i |
⊢ ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ∩ { ( ♯ ‘ 𝐴 ) } ) = ∅ ) |
24 |
|
fun |
⊢ ( ( ( 𝐴 : ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ⟶ 𝑋 ∧ { 〈 ( ♯ ‘ 𝐴 ) , 𝐵 〉 } : { ( ♯ ‘ 𝐴 ) } ⟶ { 𝐵 } ) ∧ ( ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ∩ { ( ♯ ‘ 𝐴 ) } ) = ∅ ) → ( 𝐴 ∪ { 〈 ( ♯ ‘ 𝐴 ) , 𝐵 〉 } ) : ( ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ∪ { ( ♯ ‘ 𝐴 ) } ) ⟶ ( 𝑋 ∪ { 𝐵 } ) ) |
25 |
17 21 23 24
|
syl21anc |
⊢ ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 ∪ { 〈 ( ♯ ‘ 𝐴 ) , 𝐵 〉 } ) : ( ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ∪ { ( ♯ ‘ 𝐴 ) } ) ⟶ ( 𝑋 ∪ { 𝐵 } ) ) |
26 |
25
|
ffnd |
⊢ ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 ∪ { 〈 ( ♯ ‘ 𝐴 ) , 𝐵 〉 } ) Fn ( ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ∪ { ( ♯ ‘ 𝐴 ) } ) ) |
27 |
|
elun |
⊢ ( 𝑥 ∈ ( ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ∪ { ( ♯ ‘ 𝐴 ) } ) ↔ ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ∨ 𝑥 ∈ { ( ♯ ‘ 𝐴 ) } ) ) |
28 |
|
ccats1val1 |
⊢ ( ( 𝐴 ∈ Word 𝑋 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ) → ( ( 𝐴 ++ 〈“ 𝐵 ”〉 ) ‘ 𝑥 ) = ( 𝐴 ‘ 𝑥 ) ) |
29 |
28
|
adantlr |
⊢ ( ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ) → ( ( 𝐴 ++ 〈“ 𝐵 ”〉 ) ‘ 𝑥 ) = ( 𝐴 ‘ 𝑥 ) ) |
30 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ) → 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ) |
31 |
|
fzonel |
⊢ ¬ ( ♯ ‘ 𝐴 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) |
32 |
|
nelne2 |
⊢ ( ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ∧ ¬ ( ♯ ‘ 𝐴 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ) → 𝑥 ≠ ( ♯ ‘ 𝐴 ) ) |
33 |
30 31 32
|
sylancl |
⊢ ( ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ) → 𝑥 ≠ ( ♯ ‘ 𝐴 ) ) |
34 |
33
|
necomd |
⊢ ( ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ) → ( ♯ ‘ 𝐴 ) ≠ 𝑥 ) |
35 |
|
fvunsn |
⊢ ( ( ♯ ‘ 𝐴 ) ≠ 𝑥 → ( ( 𝐴 ∪ { 〈 ( ♯ ‘ 𝐴 ) , 𝐵 〉 } ) ‘ 𝑥 ) = ( 𝐴 ‘ 𝑥 ) ) |
36 |
34 35
|
syl |
⊢ ( ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ) → ( ( 𝐴 ∪ { 〈 ( ♯ ‘ 𝐴 ) , 𝐵 〉 } ) ‘ 𝑥 ) = ( 𝐴 ‘ 𝑥 ) ) |
37 |
29 36
|
eqtr4d |
⊢ ( ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ) → ( ( 𝐴 ++ 〈“ 𝐵 ”〉 ) ‘ 𝑥 ) = ( ( 𝐴 ∪ { 〈 ( ♯ ‘ 𝐴 ) , 𝐵 〉 } ) ‘ 𝑥 ) ) |
38 |
|
fvexd |
⊢ ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ♯ ‘ 𝐴 ) ∈ V ) |
39 |
|
simpr |
⊢ ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝐵 ∈ 𝑋 ) |
40 |
17
|
fdmd |
⊢ ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ 𝑋 ) → dom 𝐴 = ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ) |
41 |
40
|
eleq2d |
⊢ ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( ♯ ‘ 𝐴 ) ∈ dom 𝐴 ↔ ( ♯ ‘ 𝐴 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ) ) |
42 |
31 41
|
mtbiri |
⊢ ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ¬ ( ♯ ‘ 𝐴 ) ∈ dom 𝐴 ) |
43 |
|
fsnunfv |
⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ V ∧ 𝐵 ∈ 𝑋 ∧ ¬ ( ♯ ‘ 𝐴 ) ∈ dom 𝐴 ) → ( ( 𝐴 ∪ { 〈 ( ♯ ‘ 𝐴 ) , 𝐵 〉 } ) ‘ ( ♯ ‘ 𝐴 ) ) = 𝐵 ) |
44 |
38 39 42 43
|
syl3anc |
⊢ ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 ∪ { 〈 ( ♯ ‘ 𝐴 ) , 𝐵 〉 } ) ‘ ( ♯ ‘ 𝐴 ) ) = 𝐵 ) |
45 |
|
simpl |
⊢ ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝐴 ∈ Word 𝑋 ) |
46 |
|
s1cl |
⊢ ( 𝐵 ∈ 𝑋 → 〈“ 𝐵 ”〉 ∈ Word 𝑋 ) |
47 |
46
|
adantl |
⊢ ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 〈“ 𝐵 ”〉 ∈ Word 𝑋 ) |
48 |
|
s1len |
⊢ ( ♯ ‘ 〈“ 𝐵 ”〉 ) = 1 |
49 |
|
1nn |
⊢ 1 ∈ ℕ |
50 |
48 49
|
eqeltri |
⊢ ( ♯ ‘ 〈“ 𝐵 ”〉 ) ∈ ℕ |
51 |
|
lbfzo0 |
⊢ ( 0 ∈ ( 0 ..^ ( ♯ ‘ 〈“ 𝐵 ”〉 ) ) ↔ ( ♯ ‘ 〈“ 𝐵 ”〉 ) ∈ ℕ ) |
52 |
50 51
|
mpbir |
⊢ 0 ∈ ( 0 ..^ ( ♯ ‘ 〈“ 𝐵 ”〉 ) ) |
53 |
52
|
a1i |
⊢ ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 0 ∈ ( 0 ..^ ( ♯ ‘ 〈“ 𝐵 ”〉 ) ) ) |
54 |
|
ccatval3 |
⊢ ( ( 𝐴 ∈ Word 𝑋 ∧ 〈“ 𝐵 ”〉 ∈ Word 𝑋 ∧ 0 ∈ ( 0 ..^ ( ♯ ‘ 〈“ 𝐵 ”〉 ) ) ) → ( ( 𝐴 ++ 〈“ 𝐵 ”〉 ) ‘ ( 0 + ( ♯ ‘ 𝐴 ) ) ) = ( 〈“ 𝐵 ”〉 ‘ 0 ) ) |
55 |
45 47 53 54
|
syl3anc |
⊢ ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 ++ 〈“ 𝐵 ”〉 ) ‘ ( 0 + ( ♯ ‘ 𝐴 ) ) ) = ( 〈“ 𝐵 ”〉 ‘ 0 ) ) |
56 |
|
s1fv |
⊢ ( 𝐵 ∈ 𝑋 → ( 〈“ 𝐵 ”〉 ‘ 0 ) = 𝐵 ) |
57 |
56
|
adantl |
⊢ ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 〈“ 𝐵 ”〉 ‘ 0 ) = 𝐵 ) |
58 |
55 57
|
eqtrd |
⊢ ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 ++ 〈“ 𝐵 ”〉 ) ‘ ( 0 + ( ♯ ‘ 𝐴 ) ) ) = 𝐵 ) |
59 |
6
|
adantr |
⊢ ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
60 |
59
|
nn0cnd |
⊢ ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ♯ ‘ 𝐴 ) ∈ ℂ ) |
61 |
60
|
addid2d |
⊢ ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 0 + ( ♯ ‘ 𝐴 ) ) = ( ♯ ‘ 𝐴 ) ) |
62 |
61
|
fveq2d |
⊢ ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 ++ 〈“ 𝐵 ”〉 ) ‘ ( 0 + ( ♯ ‘ 𝐴 ) ) ) = ( ( 𝐴 ++ 〈“ 𝐵 ”〉 ) ‘ ( ♯ ‘ 𝐴 ) ) ) |
63 |
44 58 62
|
3eqtr2rd |
⊢ ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 ++ 〈“ 𝐵 ”〉 ) ‘ ( ♯ ‘ 𝐴 ) ) = ( ( 𝐴 ∪ { 〈 ( ♯ ‘ 𝐴 ) , 𝐵 〉 } ) ‘ ( ♯ ‘ 𝐴 ) ) ) |
64 |
|
elsni |
⊢ ( 𝑥 ∈ { ( ♯ ‘ 𝐴 ) } → 𝑥 = ( ♯ ‘ 𝐴 ) ) |
65 |
64
|
fveq2d |
⊢ ( 𝑥 ∈ { ( ♯ ‘ 𝐴 ) } → ( ( 𝐴 ++ 〈“ 𝐵 ”〉 ) ‘ 𝑥 ) = ( ( 𝐴 ++ 〈“ 𝐵 ”〉 ) ‘ ( ♯ ‘ 𝐴 ) ) ) |
66 |
64
|
fveq2d |
⊢ ( 𝑥 ∈ { ( ♯ ‘ 𝐴 ) } → ( ( 𝐴 ∪ { 〈 ( ♯ ‘ 𝐴 ) , 𝐵 〉 } ) ‘ 𝑥 ) = ( ( 𝐴 ∪ { 〈 ( ♯ ‘ 𝐴 ) , 𝐵 〉 } ) ‘ ( ♯ ‘ 𝐴 ) ) ) |
67 |
65 66
|
eqeq12d |
⊢ ( 𝑥 ∈ { ( ♯ ‘ 𝐴 ) } → ( ( ( 𝐴 ++ 〈“ 𝐵 ”〉 ) ‘ 𝑥 ) = ( ( 𝐴 ∪ { 〈 ( ♯ ‘ 𝐴 ) , 𝐵 〉 } ) ‘ 𝑥 ) ↔ ( ( 𝐴 ++ 〈“ 𝐵 ”〉 ) ‘ ( ♯ ‘ 𝐴 ) ) = ( ( 𝐴 ∪ { 〈 ( ♯ ‘ 𝐴 ) , 𝐵 〉 } ) ‘ ( ♯ ‘ 𝐴 ) ) ) ) |
68 |
63 67
|
syl5ibrcom |
⊢ ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑥 ∈ { ( ♯ ‘ 𝐴 ) } → ( ( 𝐴 ++ 〈“ 𝐵 ”〉 ) ‘ 𝑥 ) = ( ( 𝐴 ∪ { 〈 ( ♯ ‘ 𝐴 ) , 𝐵 〉 } ) ‘ 𝑥 ) ) ) |
69 |
68
|
imp |
⊢ ( ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝑥 ∈ { ( ♯ ‘ 𝐴 ) } ) → ( ( 𝐴 ++ 〈“ 𝐵 ”〉 ) ‘ 𝑥 ) = ( ( 𝐴 ∪ { 〈 ( ♯ ‘ 𝐴 ) , 𝐵 〉 } ) ‘ 𝑥 ) ) |
70 |
37 69
|
jaodan |
⊢ ( ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ∨ 𝑥 ∈ { ( ♯ ‘ 𝐴 ) } ) ) → ( ( 𝐴 ++ 〈“ 𝐵 ”〉 ) ‘ 𝑥 ) = ( ( 𝐴 ∪ { 〈 ( ♯ ‘ 𝐴 ) , 𝐵 〉 } ) ‘ 𝑥 ) ) |
71 |
27 70
|
sylan2b |
⊢ ( ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝑥 ∈ ( ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ∪ { ( ♯ ‘ 𝐴 ) } ) ) → ( ( 𝐴 ++ 〈“ 𝐵 ”〉 ) ‘ 𝑥 ) = ( ( 𝐴 ∪ { 〈 ( ♯ ‘ 𝐴 ) , 𝐵 〉 } ) ‘ 𝑥 ) ) |
72 |
15 26 71
|
eqfnfvd |
⊢ ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 ++ 〈“ 𝐵 ”〉 ) = ( 𝐴 ∪ { 〈 ( ♯ ‘ 𝐴 ) , 𝐵 〉 } ) ) |