Description: A category structure is a structure. (Contributed by Mario Carneiro, 3-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | catstr | ⊢ { 〈 ( Base ‘ ndx ) , 𝑈 〉 , 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , · 〉 } Struct 〈 1 , ; 1 5 〉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn | ⊢ 1 ∈ ℕ | |
2 | basendx | ⊢ ( Base ‘ ndx ) = 1 | |
3 | 4nn0 | ⊢ 4 ∈ ℕ0 | |
4 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
5 | 1lt10 | ⊢ 1 < ; 1 0 | |
6 | 1 3 4 5 | declti | ⊢ 1 < ; 1 4 |
7 | 4nn | ⊢ 4 ∈ ℕ | |
8 | 4 7 | decnncl | ⊢ ; 1 4 ∈ ℕ |
9 | homndx | ⊢ ( Hom ‘ ndx ) = ; 1 4 | |
10 | 5nn | ⊢ 5 ∈ ℕ | |
11 | 4lt5 | ⊢ 4 < 5 | |
12 | 4 3 10 11 | declt | ⊢ ; 1 4 < ; 1 5 |
13 | 4 10 | decnncl | ⊢ ; 1 5 ∈ ℕ |
14 | ccondx | ⊢ ( comp ‘ ndx ) = ; 1 5 | |
15 | 1 2 6 8 9 12 13 14 | strle3 | ⊢ { 〈 ( Base ‘ ndx ) , 𝑈 〉 , 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , · 〉 } Struct 〈 1 , ; 1 5 〉 |