Metamath Proof Explorer


Theorem catstr

Description: A category structure is a structure. (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Assertion catstr { ⟨ ( Base ‘ ndx ) , 𝑈 ⟩ , ⟨ ( Hom ‘ ndx ) , 𝐻 ⟩ , ⟨ ( comp ‘ ndx ) , · ⟩ } Struct ⟨ 1 , 1 5 ⟩

Proof

Step Hyp Ref Expression
1 1nn 1 ∈ ℕ
2 basendx ( Base ‘ ndx ) = 1
3 4nn0 4 ∈ ℕ0
4 1nn0 1 ∈ ℕ0
5 1lt10 1 < 1 0
6 1 3 4 5 declti 1 < 1 4
7 4nn 4 ∈ ℕ
8 4 7 decnncl 1 4 ∈ ℕ
9 homndx ( Hom ‘ ndx ) = 1 4
10 5nn 5 ∈ ℕ
11 4lt5 4 < 5
12 4 3 10 11 declt 1 4 < 1 5
13 4 10 decnncl 1 5 ∈ ℕ
14 ccondx ( comp ‘ ndx ) = 1 5
15 1 2 6 8 9 12 13 14 strle3 { ⟨ ( Base ‘ ndx ) , 𝑈 ⟩ , ⟨ ( Hom ‘ ndx ) , 𝐻 ⟩ , ⟨ ( comp ‘ ndx ) , · ⟩ } Struct ⟨ 1 , 1 5 ⟩