Step |
Hyp |
Ref |
Expression |
1 |
|
ssidd |
⊢ ( 𝐶 ∈ Cat → ( Base ‘ 𝐶 ) ⊆ ( Base ‘ 𝐶 ) ) |
2 |
|
ssidd |
⊢ ( ( 𝐶 ∈ Cat ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑥 ( Homf ‘ 𝐶 ) 𝑦 ) ⊆ ( 𝑥 ( Homf ‘ 𝐶 ) 𝑦 ) ) |
3 |
2
|
ralrimivva |
⊢ ( 𝐶 ∈ Cat → ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( 𝑥 ( Homf ‘ 𝐶 ) 𝑦 ) ⊆ ( 𝑥 ( Homf ‘ 𝐶 ) 𝑦 ) ) |
4 |
|
eqid |
⊢ ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐶 ) |
5 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
6 |
4 5
|
homffn |
⊢ ( Homf ‘ 𝐶 ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) |
7 |
6
|
a1i |
⊢ ( 𝐶 ∈ Cat → ( Homf ‘ 𝐶 ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) |
8 |
|
fvexd |
⊢ ( 𝐶 ∈ Cat → ( Base ‘ 𝐶 ) ∈ V ) |
9 |
7 7 8
|
isssc |
⊢ ( 𝐶 ∈ Cat → ( ( Homf ‘ 𝐶 ) ⊆cat ( Homf ‘ 𝐶 ) ↔ ( ( Base ‘ 𝐶 ) ⊆ ( Base ‘ 𝐶 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( 𝑥 ( Homf ‘ 𝐶 ) 𝑦 ) ⊆ ( 𝑥 ( Homf ‘ 𝐶 ) 𝑦 ) ) ) ) |
10 |
1 3 9
|
mpbir2and |
⊢ ( 𝐶 ∈ Cat → ( Homf ‘ 𝐶 ) ⊆cat ( Homf ‘ 𝐶 ) ) |
11 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
12 |
|
eqid |
⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) |
13 |
|
simpl |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝐶 ∈ Cat ) |
14 |
|
simpr |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
15 |
5 11 12 13 14
|
catidcl |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) |
16 |
4 5 11 14 14
|
homfval |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑥 ( Homf ‘ 𝐶 ) 𝑥 ) = ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) |
17 |
15 16
|
eleqtrrd |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 ( Homf ‘ 𝐶 ) 𝑥 ) ) |
18 |
|
eqid |
⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) |
19 |
13
|
adantr |
⊢ ( ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) → 𝐶 ∈ Cat ) |
20 |
19
|
adantr |
⊢ ( ( ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Homf ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Homf ‘ 𝐶 ) 𝑧 ) ) ) → 𝐶 ∈ Cat ) |
21 |
14
|
adantr |
⊢ ( ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
22 |
21
|
adantr |
⊢ ( ( ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Homf ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Homf ‘ 𝐶 ) 𝑧 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
23 |
|
simpl |
⊢ ( ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) |
24 |
23
|
adantl |
⊢ ( ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) |
25 |
24
|
adantr |
⊢ ( ( ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Homf ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Homf ‘ 𝐶 ) 𝑧 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) |
26 |
|
simpr |
⊢ ( ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) → 𝑧 ∈ ( Base ‘ 𝐶 ) ) |
27 |
26
|
adantl |
⊢ ( ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑧 ∈ ( Base ‘ 𝐶 ) ) |
28 |
27
|
adantr |
⊢ ( ( ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Homf ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Homf ‘ 𝐶 ) 𝑧 ) ) ) → 𝑧 ∈ ( Base ‘ 𝐶 ) ) |
29 |
4 5 11 21 24
|
homfval |
⊢ ( ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑥 ( Homf ‘ 𝐶 ) 𝑦 ) = ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) |
30 |
29
|
eleq2d |
⊢ ( ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑓 ∈ ( 𝑥 ( Homf ‘ 𝐶 ) 𝑦 ) ↔ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) |
31 |
30
|
biimpcd |
⊢ ( 𝑓 ∈ ( 𝑥 ( Homf ‘ 𝐶 ) 𝑦 ) → ( ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) |
32 |
31
|
adantr |
⊢ ( ( 𝑓 ∈ ( 𝑥 ( Homf ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Homf ‘ 𝐶 ) 𝑧 ) ) → ( ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) |
33 |
32
|
impcom |
⊢ ( ( ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Homf ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Homf ‘ 𝐶 ) 𝑧 ) ) ) → 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) |
34 |
4 5 11 24 27
|
homfval |
⊢ ( ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑦 ( Homf ‘ 𝐶 ) 𝑧 ) = ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) |
35 |
34
|
eleq2d |
⊢ ( ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑔 ∈ ( 𝑦 ( Homf ‘ 𝐶 ) 𝑧 ) ↔ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) |
36 |
35
|
biimpd |
⊢ ( ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑔 ∈ ( 𝑦 ( Homf ‘ 𝐶 ) 𝑧 ) → 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) |
37 |
36
|
adantld |
⊢ ( ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( 𝑓 ∈ ( 𝑥 ( Homf ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Homf ‘ 𝐶 ) 𝑧 ) ) → 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) |
38 |
37
|
imp |
⊢ ( ( ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Homf ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Homf ‘ 𝐶 ) 𝑧 ) ) ) → 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) |
39 |
5 11 18 20 22 25 28 33 38
|
catcocl |
⊢ ( ( ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Homf ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Homf ‘ 𝐶 ) 𝑧 ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) |
40 |
4 5 11 21 27
|
homfval |
⊢ ( ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑥 ( Homf ‘ 𝐶 ) 𝑧 ) = ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) |
41 |
40
|
adantr |
⊢ ( ( ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Homf ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Homf ‘ 𝐶 ) 𝑧 ) ) ) → ( 𝑥 ( Homf ‘ 𝐶 ) 𝑧 ) = ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) |
42 |
39 41
|
eleqtrrd |
⊢ ( ( ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Homf ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Homf ‘ 𝐶 ) 𝑧 ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Homf ‘ 𝐶 ) 𝑧 ) ) |
43 |
42
|
ralrimivva |
⊢ ( ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) → ∀ 𝑓 ∈ ( 𝑥 ( Homf ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Homf ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Homf ‘ 𝐶 ) 𝑧 ) ) |
44 |
43
|
ralrimivva |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Homf ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Homf ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Homf ‘ 𝐶 ) 𝑧 ) ) |
45 |
17 44
|
jca |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 ( Homf ‘ 𝐶 ) 𝑥 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Homf ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Homf ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Homf ‘ 𝐶 ) 𝑧 ) ) ) |
46 |
45
|
ralrimiva |
⊢ ( 𝐶 ∈ Cat → ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 ( Homf ‘ 𝐶 ) 𝑥 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Homf ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Homf ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Homf ‘ 𝐶 ) 𝑧 ) ) ) |
47 |
|
id |
⊢ ( 𝐶 ∈ Cat → 𝐶 ∈ Cat ) |
48 |
4 12 18 47 7
|
issubc2 |
⊢ ( 𝐶 ∈ Cat → ( ( Homf ‘ 𝐶 ) ∈ ( Subcat ‘ 𝐶 ) ↔ ( ( Homf ‘ 𝐶 ) ⊆cat ( Homf ‘ 𝐶 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 ( Homf ‘ 𝐶 ) 𝑥 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Homf ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Homf ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Homf ‘ 𝐶 ) 𝑧 ) ) ) ) ) |
49 |
10 46 48
|
mpbir2and |
⊢ ( 𝐶 ∈ Cat → ( Homf ‘ 𝐶 ) ∈ ( Subcat ‘ 𝐶 ) ) |