| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cau3.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 2 |
|
uzssz |
⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℤ |
| 3 |
1 2
|
eqsstri |
⊢ 𝑍 ⊆ ℤ |
| 4 |
|
id |
⊢ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 5 |
|
eleq1 |
⊢ ( ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑗 ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ↔ ( 𝐹 ‘ 𝑗 ) ∈ ℂ ) ) |
| 6 |
|
eleq1 |
⊢ ( ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑚 ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ↔ ( 𝐹 ‘ 𝑚 ) ∈ ℂ ) ) |
| 7 |
|
abssub |
⊢ ( ( ( 𝐹 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) → ( abs ‘ ( ( 𝐹 ‘ 𝑗 ) − ( 𝐹 ‘ 𝑘 ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) ) |
| 8 |
7
|
3adant1 |
⊢ ( ( ⊤ ∧ ( 𝐹 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) → ( abs ‘ ( ( 𝐹 ‘ 𝑗 ) − ( 𝐹 ‘ 𝑘 ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) ) |
| 9 |
|
abssub |
⊢ ( ( ( 𝐹 ‘ 𝑚 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑗 ) ∈ ℂ ) → ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐹 ‘ 𝑗 ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑗 ) − ( 𝐹 ‘ 𝑚 ) ) ) ) |
| 10 |
9
|
3adant1 |
⊢ ( ( ⊤ ∧ ( 𝐹 ‘ 𝑚 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑗 ) ∈ ℂ ) → ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐹 ‘ 𝑗 ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑗 ) − ( 𝐹 ‘ 𝑚 ) ) ) ) |
| 11 |
|
abs3lem |
⊢ ( ( ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑚 ) ∈ ℂ ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ℂ ∧ 𝑥 ∈ ℝ ) ) → ( ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < ( 𝑥 / 2 ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑗 ) − ( 𝐹 ‘ 𝑚 ) ) ) < ( 𝑥 / 2 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑚 ) ) ) < 𝑥 ) ) |
| 12 |
11
|
3adant1 |
⊢ ( ( ⊤ ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑚 ) ∈ ℂ ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ℂ ∧ 𝑥 ∈ ℝ ) ) → ( ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < ( 𝑥 / 2 ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑗 ) − ( 𝐹 ‘ 𝑚 ) ) ) < ( 𝑥 / 2 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑚 ) ) ) < 𝑥 ) ) |
| 13 |
3 4 5 6 8 10 12
|
cau3lem |
⊢ ( ⊤ → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑚 ) ) ) < 𝑥 ) ) ) |
| 14 |
13
|
mptru |
⊢ ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑚 ) ) ) < 𝑥 ) ) |