| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cau3.1 | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 2 |  | abscl | ⊢ ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  →  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ ) | 
						
							| 3 | 2 | ralimi | ⊢ ( ∀ 𝑘  ∈  𝑍 ( 𝐹 ‘ 𝑘 )  ∈  ℂ  →  ∀ 𝑘  ∈  𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ ) | 
						
							| 4 | 1 | r19.29uz | ⊢ ( ( ∀ 𝑘  ∈  𝑍 ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥 )  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥 ) ) | 
						
							| 5 | 4 | ex | ⊢ ( ∀ 𝑘  ∈  𝑍 ( 𝐹 ‘ 𝑘 )  ∈  ℂ  →  ( ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥 ) ) ) | 
						
							| 6 | 5 | ralimdv | ⊢ ( ∀ 𝑘  ∈  𝑍 ( 𝐹 ‘ 𝑘 )  ∈  ℂ  →  ( ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥  →  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥 ) ) ) | 
						
							| 7 | 1 | caubnd2 | ⊢ ( ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥 )  →  ∃ 𝑧  ∈  ℝ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑧 ) | 
						
							| 8 | 6 7 | syl6 | ⊢ ( ∀ 𝑘  ∈  𝑍 ( 𝐹 ‘ 𝑘 )  ∈  ℂ  →  ( ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥  →  ∃ 𝑧  ∈  ℝ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑧 ) ) | 
						
							| 9 |  | fzssuz | ⊢ ( 𝑀 ... 𝑗 )  ⊆  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 10 | 9 1 | sseqtrri | ⊢ ( 𝑀 ... 𝑗 )  ⊆  𝑍 | 
						
							| 11 |  | ssralv | ⊢ ( ( 𝑀 ... 𝑗 )  ⊆  𝑍  →  ( ∀ 𝑘  ∈  𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ  →  ∀ 𝑘  ∈  ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ ) ) | 
						
							| 12 | 10 11 | ax-mp | ⊢ ( ∀ 𝑘  ∈  𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ  →  ∀ 𝑘  ∈  ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ ) | 
						
							| 13 |  | fzfi | ⊢ ( 𝑀 ... 𝑗 )  ∈  Fin | 
						
							| 14 |  | fimaxre3 | ⊢ ( ( ( 𝑀 ... 𝑗 )  ∈  Fin  ∧  ∀ 𝑘  ∈  ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  →  ∃ 𝑥  ∈  ℝ ∀ 𝑘  ∈  ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ≤  𝑥 ) | 
						
							| 15 | 13 14 | mpan | ⊢ ( ∀ 𝑘  ∈  ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ  →  ∃ 𝑥  ∈  ℝ ∀ 𝑘  ∈  ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ≤  𝑥 ) | 
						
							| 16 |  | peano2re | ⊢ ( 𝑥  ∈  ℝ  →  ( 𝑥  +  1 )  ∈  ℝ ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( ∀ 𝑘  ∈  ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ  ∧  𝑥  ∈  ℝ )  →  ( 𝑥  +  1 )  ∈  ℝ ) | 
						
							| 18 |  | ltp1 | ⊢ ( 𝑥  ∈  ℝ  →  𝑥  <  ( 𝑥  +  1 ) ) | 
						
							| 19 | 18 | adantl | ⊢ ( ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ  ∧  𝑥  ∈  ℝ )  →  𝑥  <  ( 𝑥  +  1 ) ) | 
						
							| 20 | 16 | adantl | ⊢ ( ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ  ∧  𝑥  ∈  ℝ )  →  ( 𝑥  +  1 )  ∈  ℝ ) | 
						
							| 21 |  | lelttr | ⊢ ( ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ  ∧  𝑥  ∈  ℝ  ∧  ( 𝑥  +  1 )  ∈  ℝ )  →  ( ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ≤  𝑥  ∧  𝑥  <  ( 𝑥  +  1 ) )  →  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  ( 𝑥  +  1 ) ) ) | 
						
							| 22 | 20 21 | mpd3an3 | ⊢ ( ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ  ∧  𝑥  ∈  ℝ )  →  ( ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ≤  𝑥  ∧  𝑥  <  ( 𝑥  +  1 ) )  →  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  ( 𝑥  +  1 ) ) ) | 
						
							| 23 | 19 22 | mpan2d | ⊢ ( ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ  ∧  𝑥  ∈  ℝ )  →  ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ≤  𝑥  →  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  ( 𝑥  +  1 ) ) ) | 
						
							| 24 | 23 | expcom | ⊢ ( 𝑥  ∈  ℝ  →  ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ  →  ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ≤  𝑥  →  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  ( 𝑥  +  1 ) ) ) ) | 
						
							| 25 | 24 | ralimdv | ⊢ ( 𝑥  ∈  ℝ  →  ( ∀ 𝑘  ∈  ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ  →  ∀ 𝑘  ∈  ( 𝑀 ... 𝑗 ) ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ≤  𝑥  →  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  ( 𝑥  +  1 ) ) ) ) | 
						
							| 26 | 25 | impcom | ⊢ ( ( ∀ 𝑘  ∈  ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ  ∧  𝑥  ∈  ℝ )  →  ∀ 𝑘  ∈  ( 𝑀 ... 𝑗 ) ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ≤  𝑥  →  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  ( 𝑥  +  1 ) ) ) | 
						
							| 27 |  | ralim | ⊢ ( ∀ 𝑘  ∈  ( 𝑀 ... 𝑗 ) ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ≤  𝑥  →  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  ( 𝑥  +  1 ) )  →  ( ∀ 𝑘  ∈  ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ≤  𝑥  →  ∀ 𝑘  ∈  ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  ( 𝑥  +  1 ) ) ) | 
						
							| 28 | 26 27 | syl | ⊢ ( ( ∀ 𝑘  ∈  ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ  ∧  𝑥  ∈  ℝ )  →  ( ∀ 𝑘  ∈  ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ≤  𝑥  →  ∀ 𝑘  ∈  ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  ( 𝑥  +  1 ) ) ) | 
						
							| 29 |  | brralrspcev | ⊢ ( ( ( 𝑥  +  1 )  ∈  ℝ  ∧  ∀ 𝑘  ∈  ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  ( 𝑥  +  1 ) )  →  ∃ 𝑤  ∈  ℝ ∀ 𝑘  ∈  ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑤 ) | 
						
							| 30 | 17 28 29 | syl6an | ⊢ ( ( ∀ 𝑘  ∈  ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ  ∧  𝑥  ∈  ℝ )  →  ( ∀ 𝑘  ∈  ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ≤  𝑥  →  ∃ 𝑤  ∈  ℝ ∀ 𝑘  ∈  ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑤 ) ) | 
						
							| 31 | 30 | rexlimdva | ⊢ ( ∀ 𝑘  ∈  ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ  →  ( ∃ 𝑥  ∈  ℝ ∀ 𝑘  ∈  ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ≤  𝑥  →  ∃ 𝑤  ∈  ℝ ∀ 𝑘  ∈  ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑤 ) ) | 
						
							| 32 | 15 31 | mpd | ⊢ ( ∀ 𝑘  ∈  ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ  →  ∃ 𝑤  ∈  ℝ ∀ 𝑘  ∈  ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑤 ) | 
						
							| 33 | 12 32 | syl | ⊢ ( ∀ 𝑘  ∈  𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ  →  ∃ 𝑤  ∈  ℝ ∀ 𝑘  ∈  ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑤 ) | 
						
							| 34 |  | max1 | ⊢ ( ( 𝑤  ∈  ℝ  ∧  𝑧  ∈  ℝ )  →  𝑤  ≤  if ( 𝑤  ≤  𝑧 ,  𝑧 ,  𝑤 ) ) | 
						
							| 35 | 34 | 3adant3 | ⊢ ( ( 𝑤  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  →  𝑤  ≤  if ( 𝑤  ≤  𝑧 ,  𝑧 ,  𝑤 ) ) | 
						
							| 36 |  | simp3 | ⊢ ( ( 𝑤  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  →  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ ) | 
						
							| 37 |  | simp1 | ⊢ ( ( 𝑤  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  →  𝑤  ∈  ℝ ) | 
						
							| 38 |  | ifcl | ⊢ ( ( 𝑧  ∈  ℝ  ∧  𝑤  ∈  ℝ )  →  if ( 𝑤  ≤  𝑧 ,  𝑧 ,  𝑤 )  ∈  ℝ ) | 
						
							| 39 | 38 | ancoms | ⊢ ( ( 𝑤  ∈  ℝ  ∧  𝑧  ∈  ℝ )  →  if ( 𝑤  ≤  𝑧 ,  𝑧 ,  𝑤 )  ∈  ℝ ) | 
						
							| 40 | 39 | 3adant3 | ⊢ ( ( 𝑤  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  →  if ( 𝑤  ≤  𝑧 ,  𝑧 ,  𝑤 )  ∈  ℝ ) | 
						
							| 41 |  | ltletr | ⊢ ( ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ  ∧  𝑤  ∈  ℝ  ∧  if ( 𝑤  ≤  𝑧 ,  𝑧 ,  𝑤 )  ∈  ℝ )  →  ( ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑤  ∧  𝑤  ≤  if ( 𝑤  ≤  𝑧 ,  𝑧 ,  𝑤 ) )  →  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  if ( 𝑤  ≤  𝑧 ,  𝑧 ,  𝑤 ) ) ) | 
						
							| 42 | 36 37 40 41 | syl3anc | ⊢ ( ( 𝑤  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  →  ( ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑤  ∧  𝑤  ≤  if ( 𝑤  ≤  𝑧 ,  𝑧 ,  𝑤 ) )  →  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  if ( 𝑤  ≤  𝑧 ,  𝑧 ,  𝑤 ) ) ) | 
						
							| 43 | 35 42 | mpan2d | ⊢ ( ( 𝑤  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  →  ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑤  →  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  if ( 𝑤  ≤  𝑧 ,  𝑧 ,  𝑤 ) ) ) | 
						
							| 44 |  | max2 | ⊢ ( ( 𝑤  ∈  ℝ  ∧  𝑧  ∈  ℝ )  →  𝑧  ≤  if ( 𝑤  ≤  𝑧 ,  𝑧 ,  𝑤 ) ) | 
						
							| 45 | 44 | 3adant3 | ⊢ ( ( 𝑤  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  →  𝑧  ≤  if ( 𝑤  ≤  𝑧 ,  𝑧 ,  𝑤 ) ) | 
						
							| 46 |  | simp2 | ⊢ ( ( 𝑤  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  →  𝑧  ∈  ℝ ) | 
						
							| 47 |  | ltletr | ⊢ ( ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  if ( 𝑤  ≤  𝑧 ,  𝑧 ,  𝑤 )  ∈  ℝ )  →  ( ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑧  ∧  𝑧  ≤  if ( 𝑤  ≤  𝑧 ,  𝑧 ,  𝑤 ) )  →  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  if ( 𝑤  ≤  𝑧 ,  𝑧 ,  𝑤 ) ) ) | 
						
							| 48 | 36 46 40 47 | syl3anc | ⊢ ( ( 𝑤  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  →  ( ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑧  ∧  𝑧  ≤  if ( 𝑤  ≤  𝑧 ,  𝑧 ,  𝑤 ) )  →  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  if ( 𝑤  ≤  𝑧 ,  𝑧 ,  𝑤 ) ) ) | 
						
							| 49 | 45 48 | mpan2d | ⊢ ( ( 𝑤  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  →  ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑧  →  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  if ( 𝑤  ≤  𝑧 ,  𝑧 ,  𝑤 ) ) ) | 
						
							| 50 | 43 49 | jaod | ⊢ ( ( 𝑤  ∈  ℝ  ∧  𝑧  ∈  ℝ  ∧  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  →  ( ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑤  ∨  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑧 )  →  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  if ( 𝑤  ≤  𝑧 ,  𝑧 ,  𝑤 ) ) ) | 
						
							| 51 | 50 | 3expia | ⊢ ( ( 𝑤  ∈  ℝ  ∧  𝑧  ∈  ℝ )  →  ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ  →  ( ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑤  ∨  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑧 )  →  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  if ( 𝑤  ≤  𝑧 ,  𝑧 ,  𝑤 ) ) ) ) | 
						
							| 52 | 51 | ralimdv | ⊢ ( ( 𝑤  ∈  ℝ  ∧  𝑧  ∈  ℝ )  →  ( ∀ 𝑘  ∈  𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ  →  ∀ 𝑘  ∈  𝑍 ( ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑤  ∨  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑧 )  →  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  if ( 𝑤  ≤  𝑧 ,  𝑧 ,  𝑤 ) ) ) ) | 
						
							| 53 |  | ralim | ⊢ ( ∀ 𝑘  ∈  𝑍 ( ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑤  ∨  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑧 )  →  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  if ( 𝑤  ≤  𝑧 ,  𝑧 ,  𝑤 ) )  →  ( ∀ 𝑘  ∈  𝑍 ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑤  ∨  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑧 )  →  ∀ 𝑘  ∈  𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  if ( 𝑤  ≤  𝑧 ,  𝑧 ,  𝑤 ) ) ) | 
						
							| 54 | 52 53 | syl6 | ⊢ ( ( 𝑤  ∈  ℝ  ∧  𝑧  ∈  ℝ )  →  ( ∀ 𝑘  ∈  𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ  →  ( ∀ 𝑘  ∈  𝑍 ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑤  ∨  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑧 )  →  ∀ 𝑘  ∈  𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  if ( 𝑤  ≤  𝑧 ,  𝑧 ,  𝑤 ) ) ) ) | 
						
							| 55 |  | brralrspcev | ⊢ ( ( if ( 𝑤  ≤  𝑧 ,  𝑧 ,  𝑤 )  ∈  ℝ  ∧  ∀ 𝑘  ∈  𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  if ( 𝑤  ≤  𝑧 ,  𝑧 ,  𝑤 ) )  →  ∃ 𝑦  ∈  ℝ ∀ 𝑘  ∈  𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑦 ) | 
						
							| 56 | 55 | ex | ⊢ ( if ( 𝑤  ≤  𝑧 ,  𝑧 ,  𝑤 )  ∈  ℝ  →  ( ∀ 𝑘  ∈  𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  if ( 𝑤  ≤  𝑧 ,  𝑧 ,  𝑤 )  →  ∃ 𝑦  ∈  ℝ ∀ 𝑘  ∈  𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑦 ) ) | 
						
							| 57 | 39 56 | syl | ⊢ ( ( 𝑤  ∈  ℝ  ∧  𝑧  ∈  ℝ )  →  ( ∀ 𝑘  ∈  𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  if ( 𝑤  ≤  𝑧 ,  𝑧 ,  𝑤 )  →  ∃ 𝑦  ∈  ℝ ∀ 𝑘  ∈  𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑦 ) ) | 
						
							| 58 | 54 57 | syl6d | ⊢ ( ( 𝑤  ∈  ℝ  ∧  𝑧  ∈  ℝ )  →  ( ∀ 𝑘  ∈  𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ  →  ( ∀ 𝑘  ∈  𝑍 ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑤  ∨  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑧 )  →  ∃ 𝑦  ∈  ℝ ∀ 𝑘  ∈  𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑦 ) ) ) | 
						
							| 59 |  | uzssz | ⊢ ( ℤ≥ ‘ 𝑀 )  ⊆  ℤ | 
						
							| 60 | 1 59 | eqsstri | ⊢ 𝑍  ⊆  ℤ | 
						
							| 61 | 60 | sseli | ⊢ ( 𝑘  ∈  𝑍  →  𝑘  ∈  ℤ ) | 
						
							| 62 | 60 | sseli | ⊢ ( 𝑗  ∈  𝑍  →  𝑗  ∈  ℤ ) | 
						
							| 63 |  | uztric | ⊢ ( ( 𝑘  ∈  ℤ  ∧  𝑗  ∈  ℤ )  →  ( 𝑗  ∈  ( ℤ≥ ‘ 𝑘 )  ∨  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ) ) | 
						
							| 64 | 61 62 63 | syl2anr | ⊢ ( ( 𝑗  ∈  𝑍  ∧  𝑘  ∈  𝑍 )  →  ( 𝑗  ∈  ( ℤ≥ ‘ 𝑘 )  ∨  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ) ) | 
						
							| 65 |  | simpr | ⊢ ( ( 𝑗  ∈  𝑍  ∧  𝑘  ∈  𝑍 )  →  𝑘  ∈  𝑍 ) | 
						
							| 66 | 65 1 | eleqtrdi | ⊢ ( ( 𝑗  ∈  𝑍  ∧  𝑘  ∈  𝑍 )  →  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 67 |  | elfzuzb | ⊢ ( 𝑘  ∈  ( 𝑀 ... 𝑗 )  ↔  ( 𝑘  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) ) ) | 
						
							| 68 | 67 | baib | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝑘  ∈  ( 𝑀 ... 𝑗 )  ↔  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) ) ) | 
						
							| 69 | 66 68 | syl | ⊢ ( ( 𝑗  ∈  𝑍  ∧  𝑘  ∈  𝑍 )  →  ( 𝑘  ∈  ( 𝑀 ... 𝑗 )  ↔  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) ) ) | 
						
							| 70 | 69 | orbi1d | ⊢ ( ( 𝑗  ∈  𝑍  ∧  𝑘  ∈  𝑍 )  →  ( ( 𝑘  ∈  ( 𝑀 ... 𝑗 )  ∨  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  ↔  ( 𝑗  ∈  ( ℤ≥ ‘ 𝑘 )  ∨  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ) ) ) | 
						
							| 71 | 64 70 | mpbird | ⊢ ( ( 𝑗  ∈  𝑍  ∧  𝑘  ∈  𝑍 )  →  ( 𝑘  ∈  ( 𝑀 ... 𝑗 )  ∨  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ) ) | 
						
							| 72 | 71 | ex | ⊢ ( 𝑗  ∈  𝑍  →  ( 𝑘  ∈  𝑍  →  ( 𝑘  ∈  ( 𝑀 ... 𝑗 )  ∨  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ) ) ) | 
						
							| 73 |  | pm3.48 | ⊢ ( ( ( 𝑘  ∈  ( 𝑀 ... 𝑗 )  →  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑤 )  ∧  ( 𝑘  ∈  ( ℤ≥ ‘ 𝑗 )  →  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑧 ) )  →  ( ( 𝑘  ∈  ( 𝑀 ... 𝑗 )  ∨  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑤  ∨  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑧 ) ) ) | 
						
							| 74 | 72 73 | syl9 | ⊢ ( 𝑗  ∈  𝑍  →  ( ( ( 𝑘  ∈  ( 𝑀 ... 𝑗 )  →  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑤 )  ∧  ( 𝑘  ∈  ( ℤ≥ ‘ 𝑗 )  →  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑧 ) )  →  ( 𝑘  ∈  𝑍  →  ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑤  ∨  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑧 ) ) ) ) | 
						
							| 75 | 74 | alimdv | ⊢ ( 𝑗  ∈  𝑍  →  ( ∀ 𝑘 ( ( 𝑘  ∈  ( 𝑀 ... 𝑗 )  →  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑤 )  ∧  ( 𝑘  ∈  ( ℤ≥ ‘ 𝑗 )  →  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑧 ) )  →  ∀ 𝑘 ( 𝑘  ∈  𝑍  →  ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑤  ∨  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑧 ) ) ) ) | 
						
							| 76 |  | df-ral | ⊢ ( ∀ 𝑘  ∈  ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑤  ↔  ∀ 𝑘 ( 𝑘  ∈  ( 𝑀 ... 𝑗 )  →  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑤 ) ) | 
						
							| 77 |  | df-ral | ⊢ ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑧  ↔  ∀ 𝑘 ( 𝑘  ∈  ( ℤ≥ ‘ 𝑗 )  →  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑧 ) ) | 
						
							| 78 | 76 77 | anbi12i | ⊢ ( ( ∀ 𝑘  ∈  ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑤  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑧 )  ↔  ( ∀ 𝑘 ( 𝑘  ∈  ( 𝑀 ... 𝑗 )  →  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑤 )  ∧  ∀ 𝑘 ( 𝑘  ∈  ( ℤ≥ ‘ 𝑗 )  →  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑧 ) ) ) | 
						
							| 79 |  | 19.26 | ⊢ ( ∀ 𝑘 ( ( 𝑘  ∈  ( 𝑀 ... 𝑗 )  →  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑤 )  ∧  ( 𝑘  ∈  ( ℤ≥ ‘ 𝑗 )  →  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑧 ) )  ↔  ( ∀ 𝑘 ( 𝑘  ∈  ( 𝑀 ... 𝑗 )  →  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑤 )  ∧  ∀ 𝑘 ( 𝑘  ∈  ( ℤ≥ ‘ 𝑗 )  →  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑧 ) ) ) | 
						
							| 80 | 78 79 | bitr4i | ⊢ ( ( ∀ 𝑘  ∈  ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑤  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑧 )  ↔  ∀ 𝑘 ( ( 𝑘  ∈  ( 𝑀 ... 𝑗 )  →  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑤 )  ∧  ( 𝑘  ∈  ( ℤ≥ ‘ 𝑗 )  →  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑧 ) ) ) | 
						
							| 81 |  | df-ral | ⊢ ( ∀ 𝑘  ∈  𝑍 ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑤  ∨  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑧 )  ↔  ∀ 𝑘 ( 𝑘  ∈  𝑍  →  ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑤  ∨  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑧 ) ) ) | 
						
							| 82 | 75 80 81 | 3imtr4g | ⊢ ( 𝑗  ∈  𝑍  →  ( ( ∀ 𝑘  ∈  ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑤  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑧 )  →  ∀ 𝑘  ∈  𝑍 ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑤  ∨  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑧 ) ) ) | 
						
							| 83 | 82 | 3impib | ⊢ ( ( 𝑗  ∈  𝑍  ∧  ∀ 𝑘  ∈  ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑤  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑧 )  →  ∀ 𝑘  ∈  𝑍 ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑤  ∨  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑧 ) ) | 
						
							| 84 | 83 | imim1i | ⊢ ( ( ∀ 𝑘  ∈  𝑍 ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑤  ∨  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑧 )  →  ∃ 𝑦  ∈  ℝ ∀ 𝑘  ∈  𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑦 )  →  ( ( 𝑗  ∈  𝑍  ∧  ∀ 𝑘  ∈  ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑤  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑧 )  →  ∃ 𝑦  ∈  ℝ ∀ 𝑘  ∈  𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑦 ) ) | 
						
							| 85 | 84 | 3expd | ⊢ ( ( ∀ 𝑘  ∈  𝑍 ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑤  ∨  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑧 )  →  ∃ 𝑦  ∈  ℝ ∀ 𝑘  ∈  𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑦 )  →  ( 𝑗  ∈  𝑍  →  ( ∀ 𝑘  ∈  ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑤  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑧  →  ∃ 𝑦  ∈  ℝ ∀ 𝑘  ∈  𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑦 ) ) ) ) | 
						
							| 86 | 58 85 | syl6 | ⊢ ( ( 𝑤  ∈  ℝ  ∧  𝑧  ∈  ℝ )  →  ( ∀ 𝑘  ∈  𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ  →  ( 𝑗  ∈  𝑍  →  ( ∀ 𝑘  ∈  ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑤  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑧  →  ∃ 𝑦  ∈  ℝ ∀ 𝑘  ∈  𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑦 ) ) ) ) ) | 
						
							| 87 | 86 | com23 | ⊢ ( ( 𝑤  ∈  ℝ  ∧  𝑧  ∈  ℝ )  →  ( 𝑗  ∈  𝑍  →  ( ∀ 𝑘  ∈  𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ  →  ( ∀ 𝑘  ∈  ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑤  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑧  →  ∃ 𝑦  ∈  ℝ ∀ 𝑘  ∈  𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑦 ) ) ) ) ) | 
						
							| 88 | 87 | expimpd | ⊢ ( 𝑤  ∈  ℝ  →  ( ( 𝑧  ∈  ℝ  ∧  𝑗  ∈  𝑍 )  →  ( ∀ 𝑘  ∈  𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ  →  ( ∀ 𝑘  ∈  ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑤  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑧  →  ∃ 𝑦  ∈  ℝ ∀ 𝑘  ∈  𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑦 ) ) ) ) ) | 
						
							| 89 | 88 | com3r | ⊢ ( ∀ 𝑘  ∈  𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ  →  ( 𝑤  ∈  ℝ  →  ( ( 𝑧  ∈  ℝ  ∧  𝑗  ∈  𝑍 )  →  ( ∀ 𝑘  ∈  ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑤  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑧  →  ∃ 𝑦  ∈  ℝ ∀ 𝑘  ∈  𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑦 ) ) ) ) ) | 
						
							| 90 | 89 | com34 | ⊢ ( ∀ 𝑘  ∈  𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ  →  ( 𝑤  ∈  ℝ  →  ( ∀ 𝑘  ∈  ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑤  →  ( ( 𝑧  ∈  ℝ  ∧  𝑗  ∈  𝑍 )  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑧  →  ∃ 𝑦  ∈  ℝ ∀ 𝑘  ∈  𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑦 ) ) ) ) ) | 
						
							| 91 | 90 | rexlimdv | ⊢ ( ∀ 𝑘  ∈  𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ  →  ( ∃ 𝑤  ∈  ℝ ∀ 𝑘  ∈  ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑤  →  ( ( 𝑧  ∈  ℝ  ∧  𝑗  ∈  𝑍 )  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑧  →  ∃ 𝑦  ∈  ℝ ∀ 𝑘  ∈  𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑦 ) ) ) ) | 
						
							| 92 | 33 91 | mpd | ⊢ ( ∀ 𝑘  ∈  𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ  →  ( ( 𝑧  ∈  ℝ  ∧  𝑗  ∈  𝑍 )  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑧  →  ∃ 𝑦  ∈  ℝ ∀ 𝑘  ∈  𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑦 ) ) ) | 
						
							| 93 | 92 | rexlimdvv | ⊢ ( ∀ 𝑘  ∈  𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ  →  ( ∃ 𝑧  ∈  ℝ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑧  →  ∃ 𝑦  ∈  ℝ ∀ 𝑘  ∈  𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑦 ) ) | 
						
							| 94 | 3 8 93 | sylsyld | ⊢ ( ∀ 𝑘  ∈  𝑍 ( 𝐹 ‘ 𝑘 )  ∈  ℂ  →  ( ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥  →  ∃ 𝑦  ∈  ℝ ∀ 𝑘  ∈  𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑦 ) ) | 
						
							| 95 | 94 | imp | ⊢ ( ( ∀ 𝑘  ∈  𝑍 ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥 )  →  ∃ 𝑦  ∈  ℝ ∀ 𝑘  ∈  𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  <  𝑦 ) |