Step |
Hyp |
Ref |
Expression |
1 |
|
caucfil.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
caucfil.2 |
⊢ 𝐿 = ( ( 𝑋 FilMap 𝐹 ) ‘ ( ℤ≥ “ 𝑍 ) ) |
3 |
|
df-3an |
⊢ ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ↔ ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) |
4 |
1
|
uztrn2 |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ 𝑍 ) |
5 |
4
|
adantll |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ 𝑍 ) |
6 |
|
simpll3 |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝐹 : 𝑍 ⟶ 𝑋 ) |
7 |
6
|
fdmd |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → dom 𝐹 = 𝑍 ) |
8 |
5 7
|
eleqtrrd |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ dom 𝐹 ) |
9 |
6 5
|
ffvelrnd |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) |
10 |
8 9
|
jca |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) ) |
11 |
10
|
biantrurd |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ↔ ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) ) |
12 |
|
uzss |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) → ( ℤ≥ ‘ 𝑘 ) ⊆ ( ℤ≥ ‘ 𝑗 ) ) |
13 |
12
|
adantl |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ℤ≥ ‘ 𝑘 ) ⊆ ( ℤ≥ ‘ 𝑗 ) ) |
14 |
13
|
sseld |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) → 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) |
15 |
14
|
pm4.71rd |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ↔ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) ) |
16 |
15
|
imbi1d |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ↔ ( ( 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) ) |
17 |
|
impexp |
⊢ ( ( ( 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ↔ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) → ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) ) |
18 |
16 17
|
bitrdi |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ↔ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) → ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) ) ) |
19 |
18
|
ralbidv2 |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ↔ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) ) |
20 |
11 19
|
bitr3d |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ↔ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) ) |
21 |
3 20
|
syl5bb |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ↔ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) ) |
22 |
21
|
ralbidva |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) ) |
23 |
|
r19.26-2 |
⊢ ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ∧ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) → ( ( 𝐹 ‘ 𝑚 ) 𝐷 ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) ) ↔ ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) → ( ( 𝐹 ‘ 𝑚 ) 𝐷 ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) ) ) |
24 |
|
eleq1w |
⊢ ( 𝑢 = 𝑘 → ( 𝑢 ∈ ( ℤ≥ ‘ 𝑚 ) ↔ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ) ) |
25 |
|
fveq2 |
⊢ ( 𝑢 = 𝑘 → ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑘 ) ) |
26 |
25
|
oveq2d |
⊢ ( 𝑢 = 𝑘 → ( ( 𝐹 ‘ 𝑚 ) 𝐷 ( 𝐹 ‘ 𝑢 ) ) = ( ( 𝐹 ‘ 𝑚 ) 𝐷 ( 𝐹 ‘ 𝑘 ) ) ) |
27 |
26
|
breq1d |
⊢ ( 𝑢 = 𝑘 → ( ( ( 𝐹 ‘ 𝑚 ) 𝐷 ( 𝐹 ‘ 𝑢 ) ) < 𝑥 ↔ ( ( 𝐹 ‘ 𝑚 ) 𝐷 ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) ) |
28 |
24 27
|
imbi12d |
⊢ ( 𝑢 = 𝑘 → ( ( 𝑢 ∈ ( ℤ≥ ‘ 𝑚 ) → ( ( 𝐹 ‘ 𝑚 ) 𝐷 ( 𝐹 ‘ 𝑢 ) ) < 𝑥 ) ↔ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) → ( ( 𝐹 ‘ 𝑚 ) 𝐷 ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) ) ) |
29 |
28
|
cbvralvw |
⊢ ( ∀ 𝑢 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑢 ∈ ( ℤ≥ ‘ 𝑚 ) → ( ( 𝐹 ‘ 𝑚 ) 𝐷 ( 𝐹 ‘ 𝑢 ) ) < 𝑥 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) → ( ( 𝐹 ‘ 𝑚 ) 𝐷 ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) ) |
30 |
29
|
ralbii |
⊢ ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑢 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑢 ∈ ( ℤ≥ ‘ 𝑚 ) → ( ( 𝐹 ‘ 𝑚 ) 𝐷 ( 𝐹 ‘ 𝑢 ) ) < 𝑥 ) ↔ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) → ( ( 𝐹 ‘ 𝑚 ) 𝐷 ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) ) |
31 |
|
fveq2 |
⊢ ( 𝑚 = 𝑘 → ( ℤ≥ ‘ 𝑚 ) = ( ℤ≥ ‘ 𝑘 ) ) |
32 |
31
|
eleq2d |
⊢ ( 𝑚 = 𝑘 → ( 𝑢 ∈ ( ℤ≥ ‘ 𝑚 ) ↔ 𝑢 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) |
33 |
|
fveq2 |
⊢ ( 𝑚 = 𝑘 → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ 𝑘 ) ) |
34 |
33
|
oveq1d |
⊢ ( 𝑚 = 𝑘 → ( ( 𝐹 ‘ 𝑚 ) 𝐷 ( 𝐹 ‘ 𝑢 ) ) = ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑢 ) ) ) |
35 |
34
|
breq1d |
⊢ ( 𝑚 = 𝑘 → ( ( ( 𝐹 ‘ 𝑚 ) 𝐷 ( 𝐹 ‘ 𝑢 ) ) < 𝑥 ↔ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑢 ) ) < 𝑥 ) ) |
36 |
32 35
|
imbi12d |
⊢ ( 𝑚 = 𝑘 → ( ( 𝑢 ∈ ( ℤ≥ ‘ 𝑚 ) → ( ( 𝐹 ‘ 𝑚 ) 𝐷 ( 𝐹 ‘ 𝑢 ) ) < 𝑥 ) ↔ ( 𝑢 ∈ ( ℤ≥ ‘ 𝑘 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑢 ) ) < 𝑥 ) ) ) |
37 |
|
eleq1w |
⊢ ( 𝑢 = 𝑚 → ( 𝑢 ∈ ( ℤ≥ ‘ 𝑘 ) ↔ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) |
38 |
|
fveq2 |
⊢ ( 𝑢 = 𝑚 → ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑚 ) ) |
39 |
38
|
oveq2d |
⊢ ( 𝑢 = 𝑚 → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑢 ) ) = ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ) |
40 |
39
|
breq1d |
⊢ ( 𝑢 = 𝑚 → ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑢 ) ) < 𝑥 ↔ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) |
41 |
37 40
|
imbi12d |
⊢ ( 𝑢 = 𝑚 → ( ( 𝑢 ∈ ( ℤ≥ ‘ 𝑘 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑢 ) ) < 𝑥 ) ↔ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) ) |
42 |
36 41
|
cbvral2vw |
⊢ ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑢 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑢 ∈ ( ℤ≥ ‘ 𝑚 ) → ( ( 𝐹 ‘ 𝑚 ) 𝐷 ( 𝐹 ‘ 𝑢 ) ) < 𝑥 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) |
43 |
|
ralcom |
⊢ ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) → ( ( 𝐹 ‘ 𝑚 ) 𝐷 ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) → ( ( 𝐹 ‘ 𝑚 ) 𝐷 ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) ) |
44 |
30 42 43
|
3bitr3i |
⊢ ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) → ( ( 𝐹 ‘ 𝑚 ) 𝐷 ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) ) |
45 |
44
|
anbi2i |
⊢ ( ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) ↔ ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) → ( ( 𝐹 ‘ 𝑚 ) 𝐷 ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) ) ) |
46 |
|
anidm |
⊢ ( ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) |
47 |
23 45 46
|
3bitr2i |
⊢ ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ∧ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) → ( ( 𝐹 ‘ 𝑚 ) 𝐷 ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) |
48 |
|
simpll1 |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
49 |
|
simpll3 |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝐹 : 𝑍 ⟶ 𝑋 ) |
50 |
1
|
uztrn2 |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑚 ∈ 𝑍 ) |
51 |
50
|
ad2ant2l |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝑚 ∈ 𝑍 ) |
52 |
49 51
|
ffvelrnd |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝐹 ‘ 𝑚 ) ∈ 𝑋 ) |
53 |
9
|
adantrr |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) |
54 |
|
xmetsym |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑚 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑚 ) 𝐷 ( 𝐹 ‘ 𝑘 ) ) = ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ) |
55 |
48 52 53 54
|
syl3anc |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( 𝐹 ‘ 𝑚 ) 𝐷 ( 𝐹 ‘ 𝑘 ) ) = ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ) |
56 |
55
|
breq1d |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( ( 𝐹 ‘ 𝑚 ) 𝐷 ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ↔ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) |
57 |
56
|
imbi2d |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) → ( ( 𝐹 ‘ 𝑚 ) 𝐷 ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) ↔ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) ) |
58 |
57
|
anbi2d |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ∧ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) → ( ( 𝐹 ‘ 𝑚 ) 𝐷 ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) ) ↔ ( ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ∧ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) ) ) |
59 |
|
jaob |
⊢ ( ( ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∨ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ↔ ( ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ∧ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) ) |
60 |
|
eluzelz |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) → 𝑘 ∈ ℤ ) |
61 |
|
eluzelz |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) → 𝑚 ∈ ℤ ) |
62 |
|
uztric |
⊢ ( ( 𝑘 ∈ ℤ ∧ 𝑚 ∈ ℤ ) → ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∨ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ) ) |
63 |
60 61 62
|
syl2an |
⊢ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∨ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ) ) |
64 |
63
|
adantl |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∨ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ) ) |
65 |
|
pm5.5 |
⊢ ( ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∨ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ) → ( ( ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∨ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ↔ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) |
66 |
64 65
|
syl |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∨ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ↔ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) |
67 |
59 66
|
bitr3id |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ∧ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) ↔ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) |
68 |
58 67
|
bitrd |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ∧ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) → ( ( 𝐹 ‘ 𝑚 ) 𝐷 ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) ) ↔ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) |
69 |
68
|
2ralbidva |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ∧ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) → ( ( 𝐹 ‘ 𝑚 ) 𝐷 ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) |
70 |
47 69
|
bitr3id |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) |
71 |
22 70
|
bitrd |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) |
72 |
71
|
rexbidva |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) |
73 |
|
uzf |
⊢ ℤ≥ : ℤ ⟶ 𝒫 ℤ |
74 |
|
ffn |
⊢ ( ℤ≥ : ℤ ⟶ 𝒫 ℤ → ℤ≥ Fn ℤ ) |
75 |
73 74
|
ax-mp |
⊢ ℤ≥ Fn ℤ |
76 |
|
uzssz |
⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℤ |
77 |
1 76
|
eqsstri |
⊢ 𝑍 ⊆ ℤ |
78 |
|
raleq |
⊢ ( 𝑢 = ( ℤ≥ ‘ 𝑗 ) → ( ∀ 𝑚 ∈ 𝑢 ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ↔ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) |
79 |
78
|
raleqbi1dv |
⊢ ( 𝑢 = ( ℤ≥ ‘ 𝑗 ) → ( ∀ 𝑘 ∈ 𝑢 ∀ 𝑚 ∈ 𝑢 ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) |
80 |
79
|
rexima |
⊢ ( ( ℤ≥ Fn ℤ ∧ 𝑍 ⊆ ℤ ) → ( ∃ 𝑢 ∈ ( ℤ≥ “ 𝑍 ) ∀ 𝑘 ∈ 𝑢 ∀ 𝑚 ∈ 𝑢 ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) |
81 |
75 77 80
|
mp2an |
⊢ ( ∃ 𝑢 ∈ ( ℤ≥ “ 𝑍 ) ∀ 𝑘 ∈ 𝑢 ∀ 𝑚 ∈ 𝑢 ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) |
82 |
72 81
|
bitr4di |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ↔ ∃ 𝑢 ∈ ( ℤ≥ “ 𝑍 ) ∀ 𝑘 ∈ 𝑢 ∀ 𝑚 ∈ 𝑢 ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) |
83 |
82
|
ralbidv |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑢 ∈ ( ℤ≥ “ 𝑍 ) ∀ 𝑘 ∈ 𝑢 ∀ 𝑚 ∈ 𝑢 ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) |
84 |
|
elfvdm |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 ∈ dom ∞Met ) |
85 |
84
|
adantr |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ) → 𝑋 ∈ dom ∞Met ) |
86 |
|
cnex |
⊢ ℂ ∈ V |
87 |
85 86
|
jctir |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ) → ( 𝑋 ∈ dom ∞Met ∧ ℂ ∈ V ) ) |
88 |
|
zsscn |
⊢ ℤ ⊆ ℂ |
89 |
77 88
|
sstri |
⊢ 𝑍 ⊆ ℂ |
90 |
89
|
jctr |
⊢ ( 𝐹 : 𝑍 ⟶ 𝑋 → ( 𝐹 : 𝑍 ⟶ 𝑋 ∧ 𝑍 ⊆ ℂ ) ) |
91 |
|
elpm2r |
⊢ ( ( ( 𝑋 ∈ dom ∞Met ∧ ℂ ∈ V ) ∧ ( 𝐹 : 𝑍 ⟶ 𝑋 ∧ 𝑍 ⊆ ℂ ) ) → 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ) |
92 |
87 90 91
|
syl2an |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ) ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) → 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ) |
93 |
|
simpl |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
94 |
|
simpr |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ) → 𝑀 ∈ ℤ ) |
95 |
1 93 94
|
iscau3 |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ) → ( 𝐹 ∈ ( Cau ‘ 𝐷 ) ↔ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) ) ) |
96 |
95
|
baibd |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ) ∧ 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ) → ( 𝐹 ∈ ( Cau ‘ 𝐷 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) ) |
97 |
92 96
|
syldan |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ) ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) → ( 𝐹 ∈ ( Cau ‘ 𝐷 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) ) |
98 |
97
|
3impa |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) → ( 𝐹 ∈ ( Cau ‘ 𝐷 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) ) |
99 |
2
|
eleq1i |
⊢ ( 𝐿 ∈ ( CauFil ‘ 𝐷 ) ↔ ( ( 𝑋 FilMap 𝐹 ) ‘ ( ℤ≥ “ 𝑍 ) ) ∈ ( CauFil ‘ 𝐷 ) ) |
100 |
1
|
uzfbas |
⊢ ( 𝑀 ∈ ℤ → ( ℤ≥ “ 𝑍 ) ∈ ( fBas ‘ 𝑍 ) ) |
101 |
|
fmcfil |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( ℤ≥ “ 𝑍 ) ∈ ( fBas ‘ 𝑍 ) ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) → ( ( ( 𝑋 FilMap 𝐹 ) ‘ ( ℤ≥ “ 𝑍 ) ) ∈ ( CauFil ‘ 𝐷 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑢 ∈ ( ℤ≥ “ 𝑍 ) ∀ 𝑘 ∈ 𝑢 ∀ 𝑚 ∈ 𝑢 ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) |
102 |
100 101
|
syl3an2 |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) → ( ( ( 𝑋 FilMap 𝐹 ) ‘ ( ℤ≥ “ 𝑍 ) ) ∈ ( CauFil ‘ 𝐷 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑢 ∈ ( ℤ≥ “ 𝑍 ) ∀ 𝑘 ∈ 𝑢 ∀ 𝑚 ∈ 𝑢 ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) |
103 |
99 102
|
syl5bb |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) → ( 𝐿 ∈ ( CauFil ‘ 𝐷 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑢 ∈ ( ℤ≥ “ 𝑍 ) ∀ 𝑘 ∈ 𝑢 ∀ 𝑚 ∈ 𝑢 ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) |
104 |
83 98 103
|
3bitr4d |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) → ( 𝐹 ∈ ( Cau ‘ 𝐷 ) ↔ 𝐿 ∈ ( CauFil ‘ 𝐷 ) ) ) |