| Step | Hyp | Ref | Expression | 
						
							| 1 |  | caucvg.1 | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 2 |  | caucvg.2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 3 |  | caucvg.3 | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥 ) | 
						
							| 4 |  | caucvg.4 | ⊢ ( 𝜑  →  𝐹  ∈  𝑉 ) | 
						
							| 5 |  | fveq2 | ⊢ ( 𝑘  =  𝑛  →  ( 𝐹 ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 6 | 5 | cbvmptv | ⊢ ( 𝑘  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑘 ) )  =  ( 𝑛  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 7 |  | uzssz | ⊢ ( ℤ≥ ‘ 𝑀 )  ⊆  ℤ | 
						
							| 8 | 1 7 | eqsstri | ⊢ 𝑍  ⊆  ℤ | 
						
							| 9 |  | zssre | ⊢ ℤ  ⊆  ℝ | 
						
							| 10 | 8 9 | sstri | ⊢ 𝑍  ⊆  ℝ | 
						
							| 11 | 10 | a1i | ⊢ ( 𝜑  →  𝑍  ⊆  ℝ ) | 
						
							| 12 | 6 | eqcomi | ⊢ ( 𝑛  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑛 ) )  =  ( 𝑘  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 13 | 2 12 | fmptd | ⊢ ( 𝜑  →  ( 𝑛  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑛 ) ) : 𝑍 ⟶ ℂ ) | 
						
							| 14 |  | 1rp | ⊢ 1  ∈  ℝ+ | 
						
							| 15 | 14 | ne0ii | ⊢ ℝ+  ≠  ∅ | 
						
							| 16 |  | r19.2z | ⊢ ( ( ℝ+  ≠  ∅  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥 )  →  ∃ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥 ) | 
						
							| 17 | 15 3 16 | sylancr | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥 ) | 
						
							| 18 |  | eluzel2 | ⊢ ( 𝑗  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑀  ∈  ℤ ) | 
						
							| 19 | 18 1 | eleq2s | ⊢ ( 𝑗  ∈  𝑍  →  𝑀  ∈  ℤ ) | 
						
							| 20 | 19 | a1d | ⊢ ( 𝑗  ∈  𝑍  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥  →  𝑀  ∈  ℤ ) ) | 
						
							| 21 | 20 | rexlimiv | ⊢ ( ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥  →  𝑀  ∈  ℤ ) | 
						
							| 22 | 21 | rexlimivw | ⊢ ( ∃ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥  →  𝑀  ∈  ℤ ) | 
						
							| 23 | 17 22 | syl | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 24 | 1 | uzsup | ⊢ ( 𝑀  ∈  ℤ  →  sup ( 𝑍 ,  ℝ* ,   <  )  =  +∞ ) | 
						
							| 25 | 23 24 | syl | ⊢ ( 𝜑  →  sup ( 𝑍 ,  ℝ* ,   <  )  =  +∞ ) | 
						
							| 26 | 8 | sseli | ⊢ ( 𝑗  ∈  𝑍  →  𝑗  ∈  ℤ ) | 
						
							| 27 | 8 | sseli | ⊢ ( 𝑘  ∈  𝑍  →  𝑘  ∈  ℤ ) | 
						
							| 28 |  | eluz | ⊢ ( ( 𝑗  ∈  ℤ  ∧  𝑘  ∈  ℤ )  →  ( 𝑘  ∈  ( ℤ≥ ‘ 𝑗 )  ↔  𝑗  ≤  𝑘 ) ) | 
						
							| 29 | 26 27 28 | syl2an | ⊢ ( ( 𝑗  ∈  𝑍  ∧  𝑘  ∈  𝑍 )  →  ( 𝑘  ∈  ( ℤ≥ ‘ 𝑗 )  ↔  𝑗  ≤  𝑘 ) ) | 
						
							| 30 | 29 | biimprd | ⊢ ( ( 𝑗  ∈  𝑍  ∧  𝑘  ∈  𝑍 )  →  ( 𝑗  ≤  𝑘  →  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ) ) | 
						
							| 31 |  | fveq2 | ⊢ ( 𝑛  =  𝑘  →  ( 𝐹 ‘ 𝑛 )  =  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 32 |  | eqid | ⊢ ( 𝑛  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑛 ) )  =  ( 𝑛  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 33 |  | fvex | ⊢ ( 𝐹 ‘ 𝑛 )  ∈  V | 
						
							| 34 | 31 32 33 | fvmpt3i | ⊢ ( 𝑘  ∈  𝑍  →  ( ( 𝑛  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 35 |  | fveq2 | ⊢ ( 𝑛  =  𝑗  →  ( 𝐹 ‘ 𝑛 )  =  ( 𝐹 ‘ 𝑗 ) ) | 
						
							| 36 | 35 32 33 | fvmpt3i | ⊢ ( 𝑗  ∈  𝑍  →  ( ( 𝑛  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑗 )  =  ( 𝐹 ‘ 𝑗 ) ) | 
						
							| 37 | 34 36 | oveqan12rd | ⊢ ( ( 𝑗  ∈  𝑍  ∧  𝑘  ∈  𝑍 )  →  ( ( ( 𝑛  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑘 )  −  ( ( 𝑛  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑗 ) )  =  ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) ) | 
						
							| 38 | 37 | fveq2d | ⊢ ( ( 𝑗  ∈  𝑍  ∧  𝑘  ∈  𝑍 )  →  ( abs ‘ ( ( ( 𝑛  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑘 )  −  ( ( 𝑛  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑗 ) ) )  =  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) ) ) | 
						
							| 39 | 38 | breq1d | ⊢ ( ( 𝑗  ∈  𝑍  ∧  𝑘  ∈  𝑍 )  →  ( ( abs ‘ ( ( ( 𝑛  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑘 )  −  ( ( 𝑛  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑗 ) ) )  <  𝑥  ↔  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥 ) ) | 
						
							| 40 | 39 | biimprd | ⊢ ( ( 𝑗  ∈  𝑍  ∧  𝑘  ∈  𝑍 )  →  ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥  →  ( abs ‘ ( ( ( 𝑛  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑘 )  −  ( ( 𝑛  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑗 ) ) )  <  𝑥 ) ) | 
						
							| 41 | 30 40 | imim12d | ⊢ ( ( 𝑗  ∈  𝑍  ∧  𝑘  ∈  𝑍 )  →  ( ( 𝑘  ∈  ( ℤ≥ ‘ 𝑗 )  →  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥 )  →  ( 𝑗  ≤  𝑘  →  ( abs ‘ ( ( ( 𝑛  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑘 )  −  ( ( 𝑛  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑗 ) ) )  <  𝑥 ) ) ) | 
						
							| 42 | 41 | ex | ⊢ ( 𝑗  ∈  𝑍  →  ( 𝑘  ∈  𝑍  →  ( ( 𝑘  ∈  ( ℤ≥ ‘ 𝑗 )  →  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥 )  →  ( 𝑗  ≤  𝑘  →  ( abs ‘ ( ( ( 𝑛  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑘 )  −  ( ( 𝑛  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑗 ) ) )  <  𝑥 ) ) ) ) | 
						
							| 43 | 42 | com23 | ⊢ ( 𝑗  ∈  𝑍  →  ( ( 𝑘  ∈  ( ℤ≥ ‘ 𝑗 )  →  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥 )  →  ( 𝑘  ∈  𝑍  →  ( 𝑗  ≤  𝑘  →  ( abs ‘ ( ( ( 𝑛  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑘 )  −  ( ( 𝑛  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑗 ) ) )  <  𝑥 ) ) ) ) | 
						
							| 44 | 43 | ralimdv2 | ⊢ ( 𝑗  ∈  𝑍  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥  →  ∀ 𝑘  ∈  𝑍 ( 𝑗  ≤  𝑘  →  ( abs ‘ ( ( ( 𝑛  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑘 )  −  ( ( 𝑛  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑗 ) ) )  <  𝑥 ) ) ) | 
						
							| 45 | 44 | reximia | ⊢ ( ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  𝑍 ( 𝑗  ≤  𝑘  →  ( abs ‘ ( ( ( 𝑛  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑘 )  −  ( ( 𝑛  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑗 ) ) )  <  𝑥 ) ) | 
						
							| 46 | 45 | ralimi | ⊢ ( ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥  →  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  𝑍 ( 𝑗  ≤  𝑘  →  ( abs ‘ ( ( ( 𝑛  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑘 )  −  ( ( 𝑛  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑗 ) ) )  <  𝑥 ) ) | 
						
							| 47 | 3 46 | syl | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  𝑍 ( 𝑗  ≤  𝑘  →  ( abs ‘ ( ( ( 𝑛  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑘 )  −  ( ( 𝑛  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑗 ) ) )  <  𝑥 ) ) | 
						
							| 48 | 11 13 25 47 | caucvgr | ⊢ ( 𝜑  →  ( 𝑛  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑛 ) )  ∈  dom   ⇝𝑟  ) | 
						
							| 49 | 13 25 | rlimdm | ⊢ ( 𝜑  →  ( ( 𝑛  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑛 ) )  ∈  dom   ⇝𝑟   ↔  ( 𝑛  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑛 ) )  ⇝𝑟  (  ⇝𝑟  ‘ ( 𝑛  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑛 ) ) ) ) ) | 
						
							| 50 | 48 49 | mpbid | ⊢ ( 𝜑  →  ( 𝑛  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑛 ) )  ⇝𝑟  (  ⇝𝑟  ‘ ( 𝑛  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑛 ) ) ) ) | 
						
							| 51 | 6 50 | eqbrtrid | ⊢ ( 𝜑  →  ( 𝑘  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑘 ) )  ⇝𝑟  (  ⇝𝑟  ‘ ( 𝑛  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑛 ) ) ) ) | 
						
							| 52 |  | eqid | ⊢ ( 𝑘  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑘 ) )  =  ( 𝑘  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 53 | 2 52 | fmptd | ⊢ ( 𝜑  →  ( 𝑘  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑘 ) ) : 𝑍 ⟶ ℂ ) | 
						
							| 54 | 1 23 53 | rlimclim | ⊢ ( 𝜑  →  ( ( 𝑘  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑘 ) )  ⇝𝑟  (  ⇝𝑟  ‘ ( 𝑛  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑛 ) ) )  ↔  ( 𝑘  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑘 ) )  ⇝  (  ⇝𝑟  ‘ ( 𝑛  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑛 ) ) ) ) ) | 
						
							| 55 | 51 54 | mpbid | ⊢ ( 𝜑  →  ( 𝑘  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑘 ) )  ⇝  (  ⇝𝑟  ‘ ( 𝑛  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑛 ) ) ) ) | 
						
							| 56 | 1 52 | climmpt | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝐹  ∈  𝑉 )  →  ( 𝐹  ⇝  (  ⇝𝑟  ‘ ( 𝑛  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑛 ) ) )  ↔  ( 𝑘  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑘 ) )  ⇝  (  ⇝𝑟  ‘ ( 𝑛  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑛 ) ) ) ) ) | 
						
							| 57 | 23 4 56 | syl2anc | ⊢ ( 𝜑  →  ( 𝐹  ⇝  (  ⇝𝑟  ‘ ( 𝑛  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑛 ) ) )  ↔  ( 𝑘  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑘 ) )  ⇝  (  ⇝𝑟  ‘ ( 𝑛  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑛 ) ) ) ) ) | 
						
							| 58 | 55 57 | mpbird | ⊢ ( 𝜑  →  𝐹  ⇝  (  ⇝𝑟  ‘ ( 𝑛  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑛 ) ) ) ) | 
						
							| 59 |  | climrel | ⊢ Rel   ⇝ | 
						
							| 60 | 59 | releldmi | ⊢ ( 𝐹  ⇝  (  ⇝𝑟  ‘ ( 𝑛  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑛 ) ) )  →  𝐹  ∈  dom   ⇝  ) | 
						
							| 61 | 58 60 | syl | ⊢ ( 𝜑  →  𝐹  ∈  dom   ⇝  ) |