| Step | Hyp | Ref | Expression | 
						
							| 1 |  | caucvgb.1 | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 2 |  | eldm2g | ⊢ ( 𝐹  ∈  dom   ⇝   →  ( 𝐹  ∈  dom   ⇝   ↔  ∃ 𝑚 〈 𝐹 ,  𝑚 〉  ∈   ⇝  ) ) | 
						
							| 3 | 2 | ibi | ⊢ ( 𝐹  ∈  dom   ⇝   →  ∃ 𝑚 〈 𝐹 ,  𝑚 〉  ∈   ⇝  ) | 
						
							| 4 |  | df-br | ⊢ ( 𝐹  ⇝  𝑚  ↔  〈 𝐹 ,  𝑚 〉  ∈   ⇝  ) | 
						
							| 5 |  | simpll | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝐹  ∈  𝑉 )  ∧  𝐹  ⇝  𝑚 )  →  𝑀  ∈  ℤ ) | 
						
							| 6 |  | 1rp | ⊢ 1  ∈  ℝ+ | 
						
							| 7 | 6 | a1i | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝐹  ∈  𝑉 )  ∧  𝐹  ⇝  𝑚 )  →  1  ∈  ℝ+ ) | 
						
							| 8 |  | eqidd | ⊢ ( ( ( ( 𝑀  ∈  ℤ  ∧  𝐹  ∈  𝑉 )  ∧  𝐹  ⇝  𝑚 )  ∧  𝑘  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 9 |  | simpr | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝐹  ∈  𝑉 )  ∧  𝐹  ⇝  𝑚 )  →  𝐹  ⇝  𝑚 ) | 
						
							| 10 | 1 5 7 8 9 | climi | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝐹  ∈  𝑉 )  ∧  𝐹  ⇝  𝑚 )  →  ∃ 𝑛  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝑚 ) )  <  1 ) ) | 
						
							| 11 |  | simpl | ⊢ ( ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝑚 ) )  <  1 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 12 | 11 | ralimi | ⊢ ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝑚 ) )  <  1 )  →  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 13 | 12 | reximi | ⊢ ( ∃ 𝑛  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  𝑚 ) )  <  1 )  →  ∃ 𝑛  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 14 | 10 13 | syl | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝐹  ∈  𝑉 )  ∧  𝐹  ⇝  𝑚 )  →  ∃ 𝑛  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 15 | 14 | ex | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝐹  ∈  𝑉 )  →  ( 𝐹  ⇝  𝑚  →  ∃ 𝑛  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) ) | 
						
							| 16 | 4 15 | biimtrrid | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝐹  ∈  𝑉 )  →  ( 〈 𝐹 ,  𝑚 〉  ∈   ⇝   →  ∃ 𝑛  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) ) | 
						
							| 17 | 16 | exlimdv | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝐹  ∈  𝑉 )  →  ( ∃ 𝑚 〈 𝐹 ,  𝑚 〉  ∈   ⇝   →  ∃ 𝑛  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) ) | 
						
							| 18 | 3 17 | syl5 | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝐹  ∈  𝑉 )  →  ( 𝐹  ∈  dom   ⇝   →  ∃ 𝑛  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) ) | 
						
							| 19 |  | fveq2 | ⊢ ( 𝑗  =  𝑛  →  ( ℤ≥ ‘ 𝑗 )  =  ( ℤ≥ ‘ 𝑛 ) ) | 
						
							| 20 | 19 | raleqdv | ⊢ ( 𝑗  =  𝑛  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ↔  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) ) | 
						
							| 21 | 20 | cbvrexvw | ⊢ ( ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ↔  ∃ 𝑛  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 22 | 21 | a1i | ⊢ ( 𝑥  =  1  →  ( ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ↔  ∃ 𝑛  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) ) | 
						
							| 23 |  | simpl | ⊢ ( ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 24 | 23 | ralimi | ⊢ ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥 )  →  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 25 | 24 | reximi | ⊢ ( ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥 )  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 26 | 25 | ralimi | ⊢ ( ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥 )  →  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 27 | 6 | a1i | ⊢ ( ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥 )  →  1  ∈  ℝ+ ) | 
						
							| 28 | 22 26 27 | rspcdva | ⊢ ( ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥 )  →  ∃ 𝑛  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 29 | 28 | a1i | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝐹  ∈  𝑉 )  →  ( ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥 )  →  ∃ 𝑛  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) ) | 
						
							| 30 |  | eluzelz | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑛  ∈  ℤ ) | 
						
							| 31 | 30 1 | eleq2s | ⊢ ( 𝑛  ∈  𝑍  →  𝑛  ∈  ℤ ) | 
						
							| 32 |  | eqid | ⊢ ( ℤ≥ ‘ 𝑛 )  =  ( ℤ≥ ‘ 𝑛 ) | 
						
							| 33 | 32 | climcau | ⊢ ( ( 𝑛  ∈  ℤ  ∧  𝐹  ∈  dom   ⇝  )  →  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥 ) | 
						
							| 34 | 31 33 | sylan | ⊢ ( ( 𝑛  ∈  𝑍  ∧  𝐹  ∈  dom   ⇝  )  →  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥 ) | 
						
							| 35 | 32 | r19.29uz | ⊢ ( ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ∃ 𝑗  ∈  ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥 )  →  ∃ 𝑗  ∈  ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥 ) ) | 
						
							| 36 | 35 | ex | ⊢ ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑘 )  ∈  ℂ  →  ( ∃ 𝑗  ∈  ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥  →  ∃ 𝑗  ∈  ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥 ) ) ) | 
						
							| 37 | 36 | ralimdv | ⊢ ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑘 )  ∈  ℂ  →  ( ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥  →  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥 ) ) ) | 
						
							| 38 | 34 37 | mpan9 | ⊢ ( ( ( 𝑛  ∈  𝑍  ∧  𝐹  ∈  dom   ⇝  )  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑘 )  ∈  ℂ )  →  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥 ) ) | 
						
							| 39 | 38 | an32s | ⊢ ( ( ( 𝑛  ∈  𝑍  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑘 )  ∈  ℂ )  ∧  𝐹  ∈  dom   ⇝  )  →  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥 ) ) | 
						
							| 40 | 39 | adantll | ⊢ ( ( ( ( 𝑀  ∈  ℤ  ∧  𝐹  ∈  𝑉 )  ∧  ( 𝑛  ∈  𝑍  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) )  ∧  𝐹  ∈  dom   ⇝  )  →  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥 ) ) | 
						
							| 41 |  | simplrr | ⊢ ( ( ( 𝐹  ∈  𝑉  ∧  ( 𝑛  ∈  𝑍  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) )  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥 ) )  →  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 42 |  | fveq2 | ⊢ ( 𝑘  =  𝑚  →  ( 𝐹 ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 43 | 42 | eleq1d | ⊢ ( 𝑘  =  𝑚  →  ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ↔  ( 𝐹 ‘ 𝑚 )  ∈  ℂ ) ) | 
						
							| 44 | 43 | rspccva | ⊢ ( ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  ( 𝐹 ‘ 𝑚 )  ∈  ℂ ) | 
						
							| 45 | 41 44 | sylan | ⊢ ( ( ( ( 𝐹  ∈  𝑉  ∧  ( 𝑛  ∈  𝑍  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) )  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥 ) )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  ( 𝐹 ‘ 𝑚 )  ∈  ℂ ) | 
						
							| 46 |  | simpr | ⊢ ( ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥 )  →  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥 ) | 
						
							| 47 | 46 | ralimi | ⊢ ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥 )  →  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥 ) | 
						
							| 48 | 42 | fvoveq1d | ⊢ ( 𝑘  =  𝑚  →  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  =  ( abs ‘ ( ( 𝐹 ‘ 𝑚 )  −  ( 𝐹 ‘ 𝑗 ) ) ) ) | 
						
							| 49 | 48 | breq1d | ⊢ ( 𝑘  =  𝑚  →  ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥  ↔  ( abs ‘ ( ( 𝐹 ‘ 𝑚 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥 ) ) | 
						
							| 50 | 49 | cbvralvw | ⊢ ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥  ↔  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑚 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥 ) | 
						
							| 51 | 47 50 | sylib | ⊢ ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥 )  →  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑚 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥 ) | 
						
							| 52 | 51 | reximi | ⊢ ( ∃ 𝑗  ∈  ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥 )  →  ∃ 𝑗  ∈  ( ℤ≥ ‘ 𝑛 ) ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑚 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥 ) | 
						
							| 53 | 52 | ralimi | ⊢ ( ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥 )  →  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ( ℤ≥ ‘ 𝑛 ) ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑚 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥 ) | 
						
							| 54 | 53 | adantl | ⊢ ( ( ( 𝐹  ∈  𝑉  ∧  ( 𝑛  ∈  𝑍  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) )  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥 ) )  →  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ( ℤ≥ ‘ 𝑛 ) ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑚 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥 ) | 
						
							| 55 |  | fveq2 | ⊢ ( 𝑗  =  𝑖  →  ( ℤ≥ ‘ 𝑗 )  =  ( ℤ≥ ‘ 𝑖 ) ) | 
						
							| 56 |  | fveq2 | ⊢ ( 𝑗  =  𝑖  →  ( 𝐹 ‘ 𝑗 )  =  ( 𝐹 ‘ 𝑖 ) ) | 
						
							| 57 | 56 | oveq2d | ⊢ ( 𝑗  =  𝑖  →  ( ( 𝐹 ‘ 𝑚 )  −  ( 𝐹 ‘ 𝑗 ) )  =  ( ( 𝐹 ‘ 𝑚 )  −  ( 𝐹 ‘ 𝑖 ) ) ) | 
						
							| 58 | 57 | fveq2d | ⊢ ( 𝑗  =  𝑖  →  ( abs ‘ ( ( 𝐹 ‘ 𝑚 )  −  ( 𝐹 ‘ 𝑗 ) ) )  =  ( abs ‘ ( ( 𝐹 ‘ 𝑚 )  −  ( 𝐹 ‘ 𝑖 ) ) ) ) | 
						
							| 59 | 58 | breq1d | ⊢ ( 𝑗  =  𝑖  →  ( ( abs ‘ ( ( 𝐹 ‘ 𝑚 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥  ↔  ( abs ‘ ( ( 𝐹 ‘ 𝑚 )  −  ( 𝐹 ‘ 𝑖 ) ) )  <  𝑥 ) ) | 
						
							| 60 | 55 59 | raleqbidv | ⊢ ( 𝑗  =  𝑖  →  ( ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑚 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥  ↔  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( ( 𝐹 ‘ 𝑚 )  −  ( 𝐹 ‘ 𝑖 ) ) )  <  𝑥 ) ) | 
						
							| 61 | 60 | cbvrexvw | ⊢ ( ∃ 𝑗  ∈  ( ℤ≥ ‘ 𝑛 ) ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑚 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥  ↔  ∃ 𝑖  ∈  ( ℤ≥ ‘ 𝑛 ) ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( ( 𝐹 ‘ 𝑚 )  −  ( 𝐹 ‘ 𝑖 ) ) )  <  𝑥 ) | 
						
							| 62 |  | breq2 | ⊢ ( 𝑥  =  𝑦  →  ( ( abs ‘ ( ( 𝐹 ‘ 𝑚 )  −  ( 𝐹 ‘ 𝑖 ) ) )  <  𝑥  ↔  ( abs ‘ ( ( 𝐹 ‘ 𝑚 )  −  ( 𝐹 ‘ 𝑖 ) ) )  <  𝑦 ) ) | 
						
							| 63 | 62 | rexralbidv | ⊢ ( 𝑥  =  𝑦  →  ( ∃ 𝑖  ∈  ( ℤ≥ ‘ 𝑛 ) ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( ( 𝐹 ‘ 𝑚 )  −  ( 𝐹 ‘ 𝑖 ) ) )  <  𝑥  ↔  ∃ 𝑖  ∈  ( ℤ≥ ‘ 𝑛 ) ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( ( 𝐹 ‘ 𝑚 )  −  ( 𝐹 ‘ 𝑖 ) ) )  <  𝑦 ) ) | 
						
							| 64 | 61 63 | bitrid | ⊢ ( 𝑥  =  𝑦  →  ( ∃ 𝑗  ∈  ( ℤ≥ ‘ 𝑛 ) ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑚 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥  ↔  ∃ 𝑖  ∈  ( ℤ≥ ‘ 𝑛 ) ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( ( 𝐹 ‘ 𝑚 )  −  ( 𝐹 ‘ 𝑖 ) ) )  <  𝑦 ) ) | 
						
							| 65 | 64 | cbvralvw | ⊢ ( ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ( ℤ≥ ‘ 𝑛 ) ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑚 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥  ↔  ∀ 𝑦  ∈  ℝ+ ∃ 𝑖  ∈  ( ℤ≥ ‘ 𝑛 ) ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( ( 𝐹 ‘ 𝑚 )  −  ( 𝐹 ‘ 𝑖 ) ) )  <  𝑦 ) | 
						
							| 66 | 54 65 | sylib | ⊢ ( ( ( 𝐹  ∈  𝑉  ∧  ( 𝑛  ∈  𝑍  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) )  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥 ) )  →  ∀ 𝑦  ∈  ℝ+ ∃ 𝑖  ∈  ( ℤ≥ ‘ 𝑛 ) ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( ( 𝐹 ‘ 𝑚 )  −  ( 𝐹 ‘ 𝑖 ) ) )  <  𝑦 ) | 
						
							| 67 |  | simpll | ⊢ ( ( ( 𝐹  ∈  𝑉  ∧  ( 𝑛  ∈  𝑍  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) )  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥 ) )  →  𝐹  ∈  𝑉 ) | 
						
							| 68 | 32 45 66 67 | caucvg | ⊢ ( ( ( 𝐹  ∈  𝑉  ∧  ( 𝑛  ∈  𝑍  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) )  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥 ) )  →  𝐹  ∈  dom   ⇝  ) | 
						
							| 69 | 68 | adantlll | ⊢ ( ( ( ( 𝑀  ∈  ℤ  ∧  𝐹  ∈  𝑉 )  ∧  ( 𝑛  ∈  𝑍  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) )  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥 ) )  →  𝐹  ∈  dom   ⇝  ) | 
						
							| 70 | 40 69 | impbida | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝐹  ∈  𝑉 )  ∧  ( 𝑛  ∈  𝑍  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) )  →  ( 𝐹  ∈  dom   ⇝   ↔  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥 ) ) ) | 
						
							| 71 | 1 32 | cau4 | ⊢ ( 𝑛  ∈  𝑍  →  ( ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥 )  ↔  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥 ) ) ) | 
						
							| 72 | 71 | ad2antrl | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝐹  ∈  𝑉 )  ∧  ( 𝑛  ∈  𝑍  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) )  →  ( ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥 )  ↔  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥 ) ) ) | 
						
							| 73 | 70 72 | bitr4d | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝐹  ∈  𝑉 )  ∧  ( 𝑛  ∈  𝑍  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) )  →  ( 𝐹  ∈  dom   ⇝   ↔  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥 ) ) ) | 
						
							| 74 | 73 | rexlimdvaa | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝐹  ∈  𝑉 )  →  ( ∃ 𝑛  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑘 )  ∈  ℂ  →  ( 𝐹  ∈  dom   ⇝   ↔  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥 ) ) ) ) | 
						
							| 75 | 18 29 74 | pm5.21ndd | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝐹  ∈  𝑉 )  →  ( 𝐹  ∈  dom   ⇝   ↔  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥 ) ) ) |