| Step |
Hyp |
Ref |
Expression |
| 1 |
|
caucvgbf.1 |
⊢ Ⅎ 𝑗 𝐹 |
| 2 |
|
caucvgbf.2 |
⊢ Ⅎ 𝑘 𝐹 |
| 3 |
|
caucvgbf.3 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 4 |
3
|
caucvgb |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉 ) → ( 𝐹 ∈ dom ⇝ ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( ( 𝐹 ‘ 𝑙 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑙 ) − ( 𝐹 ‘ 𝑖 ) ) ) < 𝑥 ) ) ) |
| 5 |
|
nfcv |
⊢ Ⅎ 𝑗 ( ℤ≥ ‘ 𝑖 ) |
| 6 |
|
nfcv |
⊢ Ⅎ 𝑗 𝑙 |
| 7 |
1 6
|
nffv |
⊢ Ⅎ 𝑗 ( 𝐹 ‘ 𝑙 ) |
| 8 |
7
|
nfel1 |
⊢ Ⅎ 𝑗 ( 𝐹 ‘ 𝑙 ) ∈ ℂ |
| 9 |
|
nfcv |
⊢ Ⅎ 𝑗 abs |
| 10 |
|
nfcv |
⊢ Ⅎ 𝑗 − |
| 11 |
|
nfcv |
⊢ Ⅎ 𝑗 𝑖 |
| 12 |
1 11
|
nffv |
⊢ Ⅎ 𝑗 ( 𝐹 ‘ 𝑖 ) |
| 13 |
7 10 12
|
nfov |
⊢ Ⅎ 𝑗 ( ( 𝐹 ‘ 𝑙 ) − ( 𝐹 ‘ 𝑖 ) ) |
| 14 |
9 13
|
nffv |
⊢ Ⅎ 𝑗 ( abs ‘ ( ( 𝐹 ‘ 𝑙 ) − ( 𝐹 ‘ 𝑖 ) ) ) |
| 15 |
|
nfcv |
⊢ Ⅎ 𝑗 < |
| 16 |
|
nfcv |
⊢ Ⅎ 𝑗 𝑥 |
| 17 |
14 15 16
|
nfbr |
⊢ Ⅎ 𝑗 ( abs ‘ ( ( 𝐹 ‘ 𝑙 ) − ( 𝐹 ‘ 𝑖 ) ) ) < 𝑥 |
| 18 |
8 17
|
nfan |
⊢ Ⅎ 𝑗 ( ( 𝐹 ‘ 𝑙 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑙 ) − ( 𝐹 ‘ 𝑖 ) ) ) < 𝑥 ) |
| 19 |
5 18
|
nfralw |
⊢ Ⅎ 𝑗 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( ( 𝐹 ‘ 𝑙 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑙 ) − ( 𝐹 ‘ 𝑖 ) ) ) < 𝑥 ) |
| 20 |
|
nfv |
⊢ Ⅎ 𝑖 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) |
| 21 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑙 |
| 22 |
2 21
|
nffv |
⊢ Ⅎ 𝑘 ( 𝐹 ‘ 𝑙 ) |
| 23 |
22
|
nfel1 |
⊢ Ⅎ 𝑘 ( 𝐹 ‘ 𝑙 ) ∈ ℂ |
| 24 |
|
nfcv |
⊢ Ⅎ 𝑘 abs |
| 25 |
|
nfcv |
⊢ Ⅎ 𝑘 − |
| 26 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑖 |
| 27 |
2 26
|
nffv |
⊢ Ⅎ 𝑘 ( 𝐹 ‘ 𝑖 ) |
| 28 |
22 25 27
|
nfov |
⊢ Ⅎ 𝑘 ( ( 𝐹 ‘ 𝑙 ) − ( 𝐹 ‘ 𝑖 ) ) |
| 29 |
24 28
|
nffv |
⊢ Ⅎ 𝑘 ( abs ‘ ( ( 𝐹 ‘ 𝑙 ) − ( 𝐹 ‘ 𝑖 ) ) ) |
| 30 |
|
nfcv |
⊢ Ⅎ 𝑘 < |
| 31 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑥 |
| 32 |
29 30 31
|
nfbr |
⊢ Ⅎ 𝑘 ( abs ‘ ( ( 𝐹 ‘ 𝑙 ) − ( 𝐹 ‘ 𝑖 ) ) ) < 𝑥 |
| 33 |
23 32
|
nfan |
⊢ Ⅎ 𝑘 ( ( 𝐹 ‘ 𝑙 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑙 ) − ( 𝐹 ‘ 𝑖 ) ) ) < 𝑥 ) |
| 34 |
|
nfv |
⊢ Ⅎ 𝑙 ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑖 ) ) ) < 𝑥 ) |
| 35 |
|
fveq2 |
⊢ ( 𝑙 = 𝑘 → ( 𝐹 ‘ 𝑙 ) = ( 𝐹 ‘ 𝑘 ) ) |
| 36 |
35
|
eleq1d |
⊢ ( 𝑙 = 𝑘 → ( ( 𝐹 ‘ 𝑙 ) ∈ ℂ ↔ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) ) |
| 37 |
35
|
fvoveq1d |
⊢ ( 𝑙 = 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑙 ) − ( 𝐹 ‘ 𝑖 ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑖 ) ) ) ) |
| 38 |
37
|
breq1d |
⊢ ( 𝑙 = 𝑘 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑙 ) − ( 𝐹 ‘ 𝑖 ) ) ) < 𝑥 ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑖 ) ) ) < 𝑥 ) ) |
| 39 |
36 38
|
anbi12d |
⊢ ( 𝑙 = 𝑘 → ( ( ( 𝐹 ‘ 𝑙 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑙 ) − ( 𝐹 ‘ 𝑖 ) ) ) < 𝑥 ) ↔ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑖 ) ) ) < 𝑥 ) ) ) |
| 40 |
33 34 39
|
cbvralw |
⊢ ( ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( ( 𝐹 ‘ 𝑙 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑙 ) − ( 𝐹 ‘ 𝑖 ) ) ) < 𝑥 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑖 ) ) ) < 𝑥 ) ) |
| 41 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( ℤ≥ ‘ 𝑖 ) = ( ℤ≥ ‘ 𝑗 ) ) |
| 42 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( 𝐹 ‘ 𝑖 ) = ( 𝐹 ‘ 𝑗 ) ) |
| 43 |
42
|
oveq2d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑖 ) ) = ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) |
| 44 |
43
|
fveq2d |
⊢ ( 𝑖 = 𝑗 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑖 ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) ) |
| 45 |
44
|
breq1d |
⊢ ( 𝑖 = 𝑗 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑖 ) ) ) < 𝑥 ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ) |
| 46 |
45
|
anbi2d |
⊢ ( 𝑖 = 𝑗 → ( ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑖 ) ) ) < 𝑥 ) ↔ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ) ) |
| 47 |
41 46
|
raleqbidv |
⊢ ( 𝑖 = 𝑗 → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑖 ) ) ) < 𝑥 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ) ) |
| 48 |
40 47
|
bitrid |
⊢ ( 𝑖 = 𝑗 → ( ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( ( 𝐹 ‘ 𝑙 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑙 ) − ( 𝐹 ‘ 𝑖 ) ) ) < 𝑥 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ) ) |
| 49 |
19 20 48
|
cbvrexw |
⊢ ( ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( ( 𝐹 ‘ 𝑙 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑙 ) − ( 𝐹 ‘ 𝑖 ) ) ) < 𝑥 ) ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ) |
| 50 |
49
|
ralbii |
⊢ ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( ( 𝐹 ‘ 𝑙 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑙 ) − ( 𝐹 ‘ 𝑖 ) ) ) < 𝑥 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ) |
| 51 |
4 50
|
bitrdi |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉 ) → ( 𝐹 ∈ dom ⇝ ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ) ) |