| Step |
Hyp |
Ref |
Expression |
| 1 |
|
caurcvgr.1 |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
| 2 |
|
caurcvgr.2 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℝ ) |
| 3 |
|
caurcvgr.3 |
⊢ ( 𝜑 → sup ( 𝐴 , ℝ* , < ) = +∞ ) |
| 4 |
|
caurcvgr.4 |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝐴 ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ) |
| 5 |
|
caucvgrlem.4 |
⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) |
| 6 |
|
reex |
⊢ ℝ ∈ V |
| 7 |
6
|
ssex |
⊢ ( 𝐴 ⊆ ℝ → 𝐴 ∈ V ) |
| 8 |
1 7
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
| 9 |
6
|
a1i |
⊢ ( 𝜑 → ℝ ∈ V ) |
| 10 |
|
fex2 |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ V ∧ ℝ ∈ V ) → 𝐹 ∈ V ) |
| 11 |
2 8 9 10
|
syl3anc |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 12 |
|
limsupcl |
⊢ ( 𝐹 ∈ V → ( lim sup ‘ 𝐹 ) ∈ ℝ* ) |
| 13 |
11 12
|
syl |
⊢ ( 𝜑 → ( lim sup ‘ 𝐹 ) ∈ ℝ* ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) → ( lim sup ‘ 𝐹 ) ∈ ℝ* ) |
| 15 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) → 𝐹 : 𝐴 ⟶ ℝ ) |
| 16 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) → 𝑗 ∈ 𝐴 ) |
| 17 |
15 16
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) → ( 𝐹 ‘ 𝑗 ) ∈ ℝ ) |
| 18 |
5
|
rpred |
⊢ ( 𝜑 → 𝑅 ∈ ℝ ) |
| 19 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) → 𝑅 ∈ ℝ ) |
| 20 |
17 19
|
readdcld |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) → ( ( 𝐹 ‘ 𝑗 ) + 𝑅 ) ∈ ℝ ) |
| 21 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
| 22 |
21
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) → -∞ ∈ ℝ* ) |
| 23 |
17 19
|
resubcld |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) → ( ( 𝐹 ‘ 𝑗 ) − 𝑅 ) ∈ ℝ ) |
| 24 |
23
|
rexrd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) → ( ( 𝐹 ‘ 𝑗 ) − 𝑅 ) ∈ ℝ* ) |
| 25 |
23
|
mnfltd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) → -∞ < ( ( 𝐹 ‘ 𝑗 ) − 𝑅 ) ) |
| 26 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) → 𝐴 ⊆ ℝ ) |
| 27 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
| 28 |
|
fss |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ ℝ ⊆ ℝ* ) → 𝐹 : 𝐴 ⟶ ℝ* ) |
| 29 |
2 27 28
|
sylancl |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℝ* ) |
| 30 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) → 𝐹 : 𝐴 ⟶ ℝ* ) |
| 31 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) → sup ( 𝐴 , ℝ* , < ) = +∞ ) |
| 32 |
26 16
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) → 𝑗 ∈ ℝ ) |
| 33 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) → ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) |
| 34 |
|
breq2 |
⊢ ( 𝑘 = 𝑚 → ( 𝑗 ≤ 𝑘 ↔ 𝑗 ≤ 𝑚 ) ) |
| 35 |
34
|
imbrov2fvoveq |
⊢ ( 𝑘 = 𝑚 → ( ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ↔ ( 𝑗 ≤ 𝑚 → ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) |
| 36 |
35
|
cbvralvw |
⊢ ( ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ↔ ∀ 𝑚 ∈ 𝐴 ( 𝑗 ≤ 𝑚 → ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) |
| 37 |
33 36
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) → ∀ 𝑚 ∈ 𝐴 ( 𝑗 ≤ 𝑚 → ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) |
| 38 |
15
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ 𝑚 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑚 ) ∈ ℝ ) |
| 39 |
17
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ 𝑚 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑗 ) ∈ ℝ ) |
| 40 |
38 39
|
resubcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ 𝑚 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑚 ) − ( 𝐹 ‘ 𝑗 ) ) ∈ ℝ ) |
| 41 |
40
|
recnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ 𝑚 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑚 ) − ( 𝐹 ‘ 𝑗 ) ) ∈ ℂ ) |
| 42 |
41
|
abscld |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ 𝑚 ∈ 𝐴 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐹 ‘ 𝑗 ) ) ) ∈ ℝ ) |
| 43 |
19
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ 𝑚 ∈ 𝐴 ) → 𝑅 ∈ ℝ ) |
| 44 |
|
ltle |
⊢ ( ( ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐹 ‘ 𝑗 ) ) ) ∈ ℝ ∧ 𝑅 ∈ ℝ ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 → ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐹 ‘ 𝑗 ) ) ) ≤ 𝑅 ) ) |
| 45 |
42 43 44
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ 𝑚 ∈ 𝐴 ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 → ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐹 ‘ 𝑗 ) ) ) ≤ 𝑅 ) ) |
| 46 |
38 39 43
|
absdifled |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ 𝑚 ∈ 𝐴 ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐹 ‘ 𝑗 ) ) ) ≤ 𝑅 ↔ ( ( ( 𝐹 ‘ 𝑗 ) − 𝑅 ) ≤ ( 𝐹 ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑚 ) ≤ ( ( 𝐹 ‘ 𝑗 ) + 𝑅 ) ) ) ) |
| 47 |
45 46
|
sylibd |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ 𝑚 ∈ 𝐴 ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 → ( ( ( 𝐹 ‘ 𝑗 ) − 𝑅 ) ≤ ( 𝐹 ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑚 ) ≤ ( ( 𝐹 ‘ 𝑗 ) + 𝑅 ) ) ) ) |
| 48 |
|
simpl |
⊢ ( ( ( ( 𝐹 ‘ 𝑗 ) − 𝑅 ) ≤ ( 𝐹 ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑚 ) ≤ ( ( 𝐹 ‘ 𝑗 ) + 𝑅 ) ) → ( ( 𝐹 ‘ 𝑗 ) − 𝑅 ) ≤ ( 𝐹 ‘ 𝑚 ) ) |
| 49 |
47 48
|
syl6 |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ 𝑚 ∈ 𝐴 ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 → ( ( 𝐹 ‘ 𝑗 ) − 𝑅 ) ≤ ( 𝐹 ‘ 𝑚 ) ) ) |
| 50 |
49
|
imim2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ 𝑚 ∈ 𝐴 ) → ( ( 𝑗 ≤ 𝑚 → ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) → ( 𝑗 ≤ 𝑚 → ( ( 𝐹 ‘ 𝑗 ) − 𝑅 ) ≤ ( 𝐹 ‘ 𝑚 ) ) ) ) |
| 51 |
50
|
ralimdva |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) → ( ∀ 𝑚 ∈ 𝐴 ( 𝑗 ≤ 𝑚 → ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) → ∀ 𝑚 ∈ 𝐴 ( 𝑗 ≤ 𝑚 → ( ( 𝐹 ‘ 𝑗 ) − 𝑅 ) ≤ ( 𝐹 ‘ 𝑚 ) ) ) ) |
| 52 |
37 51
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) → ∀ 𝑚 ∈ 𝐴 ( 𝑗 ≤ 𝑚 → ( ( 𝐹 ‘ 𝑗 ) − 𝑅 ) ≤ ( 𝐹 ‘ 𝑚 ) ) ) |
| 53 |
|
breq1 |
⊢ ( 𝑛 = 𝑗 → ( 𝑛 ≤ 𝑚 ↔ 𝑗 ≤ 𝑚 ) ) |
| 54 |
53
|
rspceaimv |
⊢ ( ( 𝑗 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝐴 ( 𝑗 ≤ 𝑚 → ( ( 𝐹 ‘ 𝑗 ) − 𝑅 ) ≤ ( 𝐹 ‘ 𝑚 ) ) ) → ∃ 𝑛 ∈ ℝ ∀ 𝑚 ∈ 𝐴 ( 𝑛 ≤ 𝑚 → ( ( 𝐹 ‘ 𝑗 ) − 𝑅 ) ≤ ( 𝐹 ‘ 𝑚 ) ) ) |
| 55 |
32 52 54
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) → ∃ 𝑛 ∈ ℝ ∀ 𝑚 ∈ 𝐴 ( 𝑛 ≤ 𝑚 → ( ( 𝐹 ‘ 𝑗 ) − 𝑅 ) ≤ ( 𝐹 ‘ 𝑚 ) ) ) |
| 56 |
26 30 24 31 55
|
limsupbnd2 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) → ( ( 𝐹 ‘ 𝑗 ) − 𝑅 ) ≤ ( lim sup ‘ 𝐹 ) ) |
| 57 |
22 24 14 25 56
|
xrltletrd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) → -∞ < ( lim sup ‘ 𝐹 ) ) |
| 58 |
20
|
rexrd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) → ( ( 𝐹 ‘ 𝑗 ) + 𝑅 ) ∈ ℝ* ) |
| 59 |
42
|
adantrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐹 ‘ 𝑗 ) ) ) ∈ ℝ ) |
| 60 |
19
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → 𝑅 ∈ ℝ ) |
| 61 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → 𝑗 ≤ 𝑚 ) |
| 62 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) |
| 63 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → 𝑚 ∈ 𝐴 ) |
| 64 |
35 62 63
|
rspcdva |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( 𝑗 ≤ 𝑚 → ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) |
| 65 |
61 64
|
mpd |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) |
| 66 |
59 60 65
|
ltled |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐹 ‘ 𝑗 ) ) ) ≤ 𝑅 ) |
| 67 |
38
|
adantrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( 𝐹 ‘ 𝑚 ) ∈ ℝ ) |
| 68 |
17
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( 𝐹 ‘ 𝑗 ) ∈ ℝ ) |
| 69 |
67 68 60
|
absdifled |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐹 ‘ 𝑗 ) ) ) ≤ 𝑅 ↔ ( ( ( 𝐹 ‘ 𝑗 ) − 𝑅 ) ≤ ( 𝐹 ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑚 ) ≤ ( ( 𝐹 ‘ 𝑗 ) + 𝑅 ) ) ) ) |
| 70 |
66 69
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( ( ( 𝐹 ‘ 𝑗 ) − 𝑅 ) ≤ ( 𝐹 ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑚 ) ≤ ( ( 𝐹 ‘ 𝑗 ) + 𝑅 ) ) ) |
| 71 |
70
|
simprd |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( 𝐹 ‘ 𝑚 ) ≤ ( ( 𝐹 ‘ 𝑗 ) + 𝑅 ) ) |
| 72 |
71
|
expr |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ 𝑚 ∈ 𝐴 ) → ( 𝑗 ≤ 𝑚 → ( 𝐹 ‘ 𝑚 ) ≤ ( ( 𝐹 ‘ 𝑗 ) + 𝑅 ) ) ) |
| 73 |
72
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) → ∀ 𝑚 ∈ 𝐴 ( 𝑗 ≤ 𝑚 → ( 𝐹 ‘ 𝑚 ) ≤ ( ( 𝐹 ‘ 𝑗 ) + 𝑅 ) ) ) |
| 74 |
53
|
rspceaimv |
⊢ ( ( 𝑗 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝐴 ( 𝑗 ≤ 𝑚 → ( 𝐹 ‘ 𝑚 ) ≤ ( ( 𝐹 ‘ 𝑗 ) + 𝑅 ) ) ) → ∃ 𝑛 ∈ ℝ ∀ 𝑚 ∈ 𝐴 ( 𝑛 ≤ 𝑚 → ( 𝐹 ‘ 𝑚 ) ≤ ( ( 𝐹 ‘ 𝑗 ) + 𝑅 ) ) ) |
| 75 |
32 73 74
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) → ∃ 𝑛 ∈ ℝ ∀ 𝑚 ∈ 𝐴 ( 𝑛 ≤ 𝑚 → ( 𝐹 ‘ 𝑚 ) ≤ ( ( 𝐹 ‘ 𝑗 ) + 𝑅 ) ) ) |
| 76 |
26 30 58 75
|
limsupbnd1 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) → ( lim sup ‘ 𝐹 ) ≤ ( ( 𝐹 ‘ 𝑗 ) + 𝑅 ) ) |
| 77 |
|
xrre |
⊢ ( ( ( ( lim sup ‘ 𝐹 ) ∈ ℝ* ∧ ( ( 𝐹 ‘ 𝑗 ) + 𝑅 ) ∈ ℝ ) ∧ ( -∞ < ( lim sup ‘ 𝐹 ) ∧ ( lim sup ‘ 𝐹 ) ≤ ( ( 𝐹 ‘ 𝑗 ) + 𝑅 ) ) ) → ( lim sup ‘ 𝐹 ) ∈ ℝ ) |
| 78 |
14 20 57 76 77
|
syl22anc |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) → ( lim sup ‘ 𝐹 ) ∈ ℝ ) |
| 79 |
78
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( lim sup ‘ 𝐹 ) ∈ ℝ ) |
| 80 |
67 79
|
resubcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( ( 𝐹 ‘ 𝑚 ) − ( lim sup ‘ 𝐹 ) ) ∈ ℝ ) |
| 81 |
80
|
recnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( ( 𝐹 ‘ 𝑚 ) − ( lim sup ‘ 𝐹 ) ) ∈ ℂ ) |
| 82 |
81
|
abscld |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( lim sup ‘ 𝐹 ) ) ) ∈ ℝ ) |
| 83 |
|
2re |
⊢ 2 ∈ ℝ |
| 84 |
|
remulcl |
⊢ ( ( 2 ∈ ℝ ∧ 𝑅 ∈ ℝ ) → ( 2 · 𝑅 ) ∈ ℝ ) |
| 85 |
83 60 84
|
sylancr |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( 2 · 𝑅 ) ∈ ℝ ) |
| 86 |
|
3re |
⊢ 3 ∈ ℝ |
| 87 |
|
remulcl |
⊢ ( ( 3 ∈ ℝ ∧ 𝑅 ∈ ℝ ) → ( 3 · 𝑅 ) ∈ ℝ ) |
| 88 |
86 60 87
|
sylancr |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( 3 · 𝑅 ) ∈ ℝ ) |
| 89 |
67
|
recnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( 𝐹 ‘ 𝑚 ) ∈ ℂ ) |
| 90 |
79
|
recnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( lim sup ‘ 𝐹 ) ∈ ℂ ) |
| 91 |
89 90
|
abssubd |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( lim sup ‘ 𝐹 ) ) ) = ( abs ‘ ( ( lim sup ‘ 𝐹 ) − ( 𝐹 ‘ 𝑚 ) ) ) ) |
| 92 |
67 85
|
resubcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( ( 𝐹 ‘ 𝑚 ) − ( 2 · 𝑅 ) ) ∈ ℝ ) |
| 93 |
23
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( ( 𝐹 ‘ 𝑗 ) − 𝑅 ) ∈ ℝ ) |
| 94 |
60
|
recnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → 𝑅 ∈ ℂ ) |
| 95 |
94
|
2timesd |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( 2 · 𝑅 ) = ( 𝑅 + 𝑅 ) ) |
| 96 |
95
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( ( 𝐹 ‘ 𝑚 ) − ( 2 · 𝑅 ) ) = ( ( 𝐹 ‘ 𝑚 ) − ( 𝑅 + 𝑅 ) ) ) |
| 97 |
89 94 94
|
subsub4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( ( ( 𝐹 ‘ 𝑚 ) − 𝑅 ) − 𝑅 ) = ( ( 𝐹 ‘ 𝑚 ) − ( 𝑅 + 𝑅 ) ) ) |
| 98 |
96 97
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( ( 𝐹 ‘ 𝑚 ) − ( 2 · 𝑅 ) ) = ( ( ( 𝐹 ‘ 𝑚 ) − 𝑅 ) − 𝑅 ) ) |
| 99 |
67 60
|
resubcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( ( 𝐹 ‘ 𝑚 ) − 𝑅 ) ∈ ℝ ) |
| 100 |
67 60 68
|
lesubaddd |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( ( ( 𝐹 ‘ 𝑚 ) − 𝑅 ) ≤ ( 𝐹 ‘ 𝑗 ) ↔ ( 𝐹 ‘ 𝑚 ) ≤ ( ( 𝐹 ‘ 𝑗 ) + 𝑅 ) ) ) |
| 101 |
71 100
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( ( 𝐹 ‘ 𝑚 ) − 𝑅 ) ≤ ( 𝐹 ‘ 𝑗 ) ) |
| 102 |
99 68 60 101
|
lesub1dd |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( ( ( 𝐹 ‘ 𝑚 ) − 𝑅 ) − 𝑅 ) ≤ ( ( 𝐹 ‘ 𝑗 ) − 𝑅 ) ) |
| 103 |
98 102
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( ( 𝐹 ‘ 𝑚 ) − ( 2 · 𝑅 ) ) ≤ ( ( 𝐹 ‘ 𝑗 ) − 𝑅 ) ) |
| 104 |
56
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( ( 𝐹 ‘ 𝑗 ) − 𝑅 ) ≤ ( lim sup ‘ 𝐹 ) ) |
| 105 |
92 93 79 103 104
|
letrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( ( 𝐹 ‘ 𝑚 ) − ( 2 · 𝑅 ) ) ≤ ( lim sup ‘ 𝐹 ) ) |
| 106 |
20
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( ( 𝐹 ‘ 𝑗 ) + 𝑅 ) ∈ ℝ ) |
| 107 |
67 85
|
readdcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( ( 𝐹 ‘ 𝑚 ) + ( 2 · 𝑅 ) ) ∈ ℝ ) |
| 108 |
76
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( lim sup ‘ 𝐹 ) ≤ ( ( 𝐹 ‘ 𝑗 ) + 𝑅 ) ) |
| 109 |
67 60
|
readdcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( ( 𝐹 ‘ 𝑚 ) + 𝑅 ) ∈ ℝ ) |
| 110 |
70 48
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( ( 𝐹 ‘ 𝑗 ) − 𝑅 ) ≤ ( 𝐹 ‘ 𝑚 ) ) |
| 111 |
68 60 67
|
lesubaddd |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( ( ( 𝐹 ‘ 𝑗 ) − 𝑅 ) ≤ ( 𝐹 ‘ 𝑚 ) ↔ ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝐹 ‘ 𝑚 ) + 𝑅 ) ) ) |
| 112 |
110 111
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝐹 ‘ 𝑚 ) + 𝑅 ) ) |
| 113 |
68 109 60 112
|
leadd1dd |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( ( 𝐹 ‘ 𝑗 ) + 𝑅 ) ≤ ( ( ( 𝐹 ‘ 𝑚 ) + 𝑅 ) + 𝑅 ) ) |
| 114 |
89 94 94
|
addassd |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( ( ( 𝐹 ‘ 𝑚 ) + 𝑅 ) + 𝑅 ) = ( ( 𝐹 ‘ 𝑚 ) + ( 𝑅 + 𝑅 ) ) ) |
| 115 |
95
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( ( 𝐹 ‘ 𝑚 ) + ( 2 · 𝑅 ) ) = ( ( 𝐹 ‘ 𝑚 ) + ( 𝑅 + 𝑅 ) ) ) |
| 116 |
114 115
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( ( ( 𝐹 ‘ 𝑚 ) + 𝑅 ) + 𝑅 ) = ( ( 𝐹 ‘ 𝑚 ) + ( 2 · 𝑅 ) ) ) |
| 117 |
113 116
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( ( 𝐹 ‘ 𝑗 ) + 𝑅 ) ≤ ( ( 𝐹 ‘ 𝑚 ) + ( 2 · 𝑅 ) ) ) |
| 118 |
79 106 107 108 117
|
letrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( lim sup ‘ 𝐹 ) ≤ ( ( 𝐹 ‘ 𝑚 ) + ( 2 · 𝑅 ) ) ) |
| 119 |
79 67 85
|
absdifled |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( ( abs ‘ ( ( lim sup ‘ 𝐹 ) − ( 𝐹 ‘ 𝑚 ) ) ) ≤ ( 2 · 𝑅 ) ↔ ( ( ( 𝐹 ‘ 𝑚 ) − ( 2 · 𝑅 ) ) ≤ ( lim sup ‘ 𝐹 ) ∧ ( lim sup ‘ 𝐹 ) ≤ ( ( 𝐹 ‘ 𝑚 ) + ( 2 · 𝑅 ) ) ) ) ) |
| 120 |
105 118 119
|
mpbir2and |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( abs ‘ ( ( lim sup ‘ 𝐹 ) − ( 𝐹 ‘ 𝑚 ) ) ) ≤ ( 2 · 𝑅 ) ) |
| 121 |
91 120
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( lim sup ‘ 𝐹 ) ) ) ≤ ( 2 · 𝑅 ) ) |
| 122 |
|
2lt3 |
⊢ 2 < 3 |
| 123 |
83
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → 2 ∈ ℝ ) |
| 124 |
86
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → 3 ∈ ℝ ) |
| 125 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) → 𝑅 ∈ ℝ+ ) |
| 126 |
125
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → 𝑅 ∈ ℝ+ ) |
| 127 |
123 124 126
|
ltmul1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( 2 < 3 ↔ ( 2 · 𝑅 ) < ( 3 · 𝑅 ) ) ) |
| 128 |
122 127
|
mpbii |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( 2 · 𝑅 ) < ( 3 · 𝑅 ) ) |
| 129 |
82 85 88 121 128
|
lelttrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( lim sup ‘ 𝐹 ) ) ) < ( 3 · 𝑅 ) ) |
| 130 |
129
|
expr |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ 𝑚 ∈ 𝐴 ) → ( 𝑗 ≤ 𝑚 → ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( lim sup ‘ 𝐹 ) ) ) < ( 3 · 𝑅 ) ) ) |
| 131 |
130
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) → ∀ 𝑚 ∈ 𝐴 ( 𝑗 ≤ 𝑚 → ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( lim sup ‘ 𝐹 ) ) ) < ( 3 · 𝑅 ) ) ) |
| 132 |
34
|
imbrov2fvoveq |
⊢ ( 𝑘 = 𝑚 → ( ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ) < ( 3 · 𝑅 ) ) ↔ ( 𝑗 ≤ 𝑚 → ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( lim sup ‘ 𝐹 ) ) ) < ( 3 · 𝑅 ) ) ) ) |
| 133 |
132
|
cbvralvw |
⊢ ( ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ) < ( 3 · 𝑅 ) ) ↔ ∀ 𝑚 ∈ 𝐴 ( 𝑗 ≤ 𝑚 → ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( lim sup ‘ 𝐹 ) ) ) < ( 3 · 𝑅 ) ) ) |
| 134 |
131 133
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) → ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ) < ( 3 · 𝑅 ) ) ) |
| 135 |
78 134
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) → ( ( lim sup ‘ 𝐹 ) ∈ ℝ ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ) < ( 3 · 𝑅 ) ) ) ) |
| 136 |
|
breq2 |
⊢ ( 𝑥 = 𝑅 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) |
| 137 |
136
|
imbi2d |
⊢ ( 𝑥 = 𝑅 → ( ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ↔ ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) |
| 138 |
137
|
rexralbidv |
⊢ ( 𝑥 = 𝑅 → ( ∃ 𝑗 ∈ 𝐴 ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ↔ ∃ 𝑗 ∈ 𝐴 ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) |
| 139 |
138 4 5
|
rspcdva |
⊢ ( 𝜑 → ∃ 𝑗 ∈ 𝐴 ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) |
| 140 |
135 139
|
reximddv |
⊢ ( 𝜑 → ∃ 𝑗 ∈ 𝐴 ( ( lim sup ‘ 𝐹 ) ∈ ℝ ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ) < ( 3 · 𝑅 ) ) ) ) |