Step |
Hyp |
Ref |
Expression |
1 |
|
df-cau |
⊢ Cau = ( 𝑑 ∈ ∪ ran ∞Met ↦ { 𝑓 ∈ ( dom dom 𝑑 ↑pm ℂ ) ∣ ∀ 𝑥 ∈ ℝ+ ∃ 𝑘 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝑑 ) 𝑥 ) } ) |
2 |
|
dmeq |
⊢ ( 𝑑 = 𝐷 → dom 𝑑 = dom 𝐷 ) |
3 |
2
|
dmeqd |
⊢ ( 𝑑 = 𝐷 → dom dom 𝑑 = dom dom 𝐷 ) |
4 |
|
xmetf |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ) |
5 |
4
|
fdmd |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → dom 𝐷 = ( 𝑋 × 𝑋 ) ) |
6 |
5
|
dmeqd |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → dom dom 𝐷 = dom ( 𝑋 × 𝑋 ) ) |
7 |
|
dmxpid |
⊢ dom ( 𝑋 × 𝑋 ) = 𝑋 |
8 |
6 7
|
eqtrdi |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → dom dom 𝐷 = 𝑋 ) |
9 |
3 8
|
sylan9eqr |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → dom dom 𝑑 = 𝑋 ) |
10 |
9
|
oveq1d |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → ( dom dom 𝑑 ↑pm ℂ ) = ( 𝑋 ↑pm ℂ ) ) |
11 |
|
simpr |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → 𝑑 = 𝐷 ) |
12 |
11
|
fveq2d |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → ( ball ‘ 𝑑 ) = ( ball ‘ 𝐷 ) ) |
13 |
12
|
oveqd |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝑑 ) 𝑥 ) = ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) 𝑥 ) ) |
14 |
13
|
feq3d |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → ( ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝑑 ) 𝑥 ) ↔ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ) |
15 |
14
|
rexbidv |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → ( ∃ 𝑘 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝑑 ) 𝑥 ) ↔ ∃ 𝑘 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ) |
16 |
15
|
ralbidv |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑘 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝑑 ) 𝑥 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑘 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ) |
17 |
10 16
|
rabeqbidv |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → { 𝑓 ∈ ( dom dom 𝑑 ↑pm ℂ ) ∣ ∀ 𝑥 ∈ ℝ+ ∃ 𝑘 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝑑 ) 𝑥 ) } = { 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∣ ∀ 𝑥 ∈ ℝ+ ∃ 𝑘 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) 𝑥 ) } ) |
18 |
|
fvssunirn |
⊢ ( ∞Met ‘ 𝑋 ) ⊆ ∪ ran ∞Met |
19 |
18
|
sseli |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐷 ∈ ∪ ran ∞Met ) |
20 |
|
ovex |
⊢ ( 𝑋 ↑pm ℂ ) ∈ V |
21 |
20
|
rabex |
⊢ { 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∣ ∀ 𝑥 ∈ ℝ+ ∃ 𝑘 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) 𝑥 ) } ∈ V |
22 |
21
|
a1i |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → { 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∣ ∀ 𝑥 ∈ ℝ+ ∃ 𝑘 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) 𝑥 ) } ∈ V ) |
23 |
1 17 19 22
|
fvmptd2 |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( Cau ‘ 𝐷 ) = { 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∣ ∀ 𝑥 ∈ ℝ+ ∃ 𝑘 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) 𝑥 ) } ) |