| Step | Hyp | Ref | Expression | 
						
							| 1 |  | caurcvg.1 | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 2 |  | caurcvg.3 | ⊢ ( 𝜑  →  𝐹 : 𝑍 ⟶ ℝ ) | 
						
							| 3 |  | caurcvg.4 | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ℝ+ ∃ 𝑚  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑚 ) ) )  <  𝑥 ) | 
						
							| 4 |  | uzssz | ⊢ ( ℤ≥ ‘ 𝑀 )  ⊆  ℤ | 
						
							| 5 | 1 4 | eqsstri | ⊢ 𝑍  ⊆  ℤ | 
						
							| 6 |  | zssre | ⊢ ℤ  ⊆  ℝ | 
						
							| 7 | 5 6 | sstri | ⊢ 𝑍  ⊆  ℝ | 
						
							| 8 | 7 | a1i | ⊢ ( 𝜑  →  𝑍  ⊆  ℝ ) | 
						
							| 9 |  | 1rp | ⊢ 1  ∈  ℝ+ | 
						
							| 10 | 9 | ne0ii | ⊢ ℝ+  ≠  ∅ | 
						
							| 11 |  | r19.2z | ⊢ ( ( ℝ+  ≠  ∅  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑚  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑚 ) ) )  <  𝑥 )  →  ∃ 𝑥  ∈  ℝ+ ∃ 𝑚  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑚 ) ) )  <  𝑥 ) | 
						
							| 12 | 10 3 11 | sylancr | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  ℝ+ ∃ 𝑚  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑚 ) ) )  <  𝑥 ) | 
						
							| 13 |  | eluzel2 | ⊢ ( 𝑚  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑀  ∈  ℤ ) | 
						
							| 14 | 13 1 | eleq2s | ⊢ ( 𝑚  ∈  𝑍  →  𝑀  ∈  ℤ ) | 
						
							| 15 | 1 | uzsup | ⊢ ( 𝑀  ∈  ℤ  →  sup ( 𝑍 ,  ℝ* ,   <  )  =  +∞ ) | 
						
							| 16 | 14 15 | syl | ⊢ ( 𝑚  ∈  𝑍  →  sup ( 𝑍 ,  ℝ* ,   <  )  =  +∞ ) | 
						
							| 17 | 16 | a1d | ⊢ ( 𝑚  ∈  𝑍  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑚 ) ) )  <  𝑥  →  sup ( 𝑍 ,  ℝ* ,   <  )  =  +∞ ) ) | 
						
							| 18 | 17 | rexlimiv | ⊢ ( ∃ 𝑚  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑚 ) ) )  <  𝑥  →  sup ( 𝑍 ,  ℝ* ,   <  )  =  +∞ ) | 
						
							| 19 | 18 | rexlimivw | ⊢ ( ∃ 𝑥  ∈  ℝ+ ∃ 𝑚  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑚 ) ) )  <  𝑥  →  sup ( 𝑍 ,  ℝ* ,   <  )  =  +∞ ) | 
						
							| 20 | 12 19 | syl | ⊢ ( 𝜑  →  sup ( 𝑍 ,  ℝ* ,   <  )  =  +∞ ) | 
						
							| 21 | 5 | sseli | ⊢ ( 𝑚  ∈  𝑍  →  𝑚  ∈  ℤ ) | 
						
							| 22 | 5 | sseli | ⊢ ( 𝑘  ∈  𝑍  →  𝑘  ∈  ℤ ) | 
						
							| 23 |  | eluz | ⊢ ( ( 𝑚  ∈  ℤ  ∧  𝑘  ∈  ℤ )  →  ( 𝑘  ∈  ( ℤ≥ ‘ 𝑚 )  ↔  𝑚  ≤  𝑘 ) ) | 
						
							| 24 | 21 22 23 | syl2an | ⊢ ( ( 𝑚  ∈  𝑍  ∧  𝑘  ∈  𝑍 )  →  ( 𝑘  ∈  ( ℤ≥ ‘ 𝑚 )  ↔  𝑚  ≤  𝑘 ) ) | 
						
							| 25 | 24 | biimprd | ⊢ ( ( 𝑚  ∈  𝑍  ∧  𝑘  ∈  𝑍 )  →  ( 𝑚  ≤  𝑘  →  𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) ) ) | 
						
							| 26 | 25 | expimpd | ⊢ ( 𝑚  ∈  𝑍  →  ( ( 𝑘  ∈  𝑍  ∧  𝑚  ≤  𝑘 )  →  𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) ) ) | 
						
							| 27 | 26 | imim1d | ⊢ ( 𝑚  ∈  𝑍  →  ( ( 𝑘  ∈  ( ℤ≥ ‘ 𝑚 )  →  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑚 ) ) )  <  𝑥 )  →  ( ( 𝑘  ∈  𝑍  ∧  𝑚  ≤  𝑘 )  →  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑚 ) ) )  <  𝑥 ) ) ) | 
						
							| 28 | 27 | exp4a | ⊢ ( 𝑚  ∈  𝑍  →  ( ( 𝑘  ∈  ( ℤ≥ ‘ 𝑚 )  →  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑚 ) ) )  <  𝑥 )  →  ( 𝑘  ∈  𝑍  →  ( 𝑚  ≤  𝑘  →  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑚 ) ) )  <  𝑥 ) ) ) ) | 
						
							| 29 | 28 | ralimdv2 | ⊢ ( 𝑚  ∈  𝑍  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑚 ) ) )  <  𝑥  →  ∀ 𝑘  ∈  𝑍 ( 𝑚  ≤  𝑘  →  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑚 ) ) )  <  𝑥 ) ) ) | 
						
							| 30 | 29 | reximia | ⊢ ( ∃ 𝑚  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑚 ) ) )  <  𝑥  →  ∃ 𝑚  ∈  𝑍 ∀ 𝑘  ∈  𝑍 ( 𝑚  ≤  𝑘  →  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑚 ) ) )  <  𝑥 ) ) | 
						
							| 31 | 30 | ralimi | ⊢ ( ∀ 𝑥  ∈  ℝ+ ∃ 𝑚  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑚 ) ) )  <  𝑥  →  ∀ 𝑥  ∈  ℝ+ ∃ 𝑚  ∈  𝑍 ∀ 𝑘  ∈  𝑍 ( 𝑚  ≤  𝑘  →  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑚 ) ) )  <  𝑥 ) ) | 
						
							| 32 | 3 31 | syl | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ℝ+ ∃ 𝑚  ∈  𝑍 ∀ 𝑘  ∈  𝑍 ( 𝑚  ≤  𝑘  →  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑚 ) ) )  <  𝑥 ) ) | 
						
							| 33 | 8 2 20 32 | caurcvgr | ⊢ ( 𝜑  →  𝐹  ⇝𝑟  ( lim sup ‘ 𝐹 ) ) | 
						
							| 34 | 14 | a1d | ⊢ ( 𝑚  ∈  𝑍  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑚 ) ) )  <  𝑥  →  𝑀  ∈  ℤ ) ) | 
						
							| 35 | 34 | rexlimiv | ⊢ ( ∃ 𝑚  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑚 ) ) )  <  𝑥  →  𝑀  ∈  ℤ ) | 
						
							| 36 | 35 | rexlimivw | ⊢ ( ∃ 𝑥  ∈  ℝ+ ∃ 𝑚  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑚 ) ) )  <  𝑥  →  𝑀  ∈  ℤ ) | 
						
							| 37 | 12 36 | syl | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 38 |  | ax-resscn | ⊢ ℝ  ⊆  ℂ | 
						
							| 39 |  | fss | ⊢ ( ( 𝐹 : 𝑍 ⟶ ℝ  ∧  ℝ  ⊆  ℂ )  →  𝐹 : 𝑍 ⟶ ℂ ) | 
						
							| 40 | 2 38 39 | sylancl | ⊢ ( 𝜑  →  𝐹 : 𝑍 ⟶ ℂ ) | 
						
							| 41 | 1 37 40 | rlimclim | ⊢ ( 𝜑  →  ( 𝐹  ⇝𝑟  ( lim sup ‘ 𝐹 )  ↔  𝐹  ⇝  ( lim sup ‘ 𝐹 ) ) ) | 
						
							| 42 | 33 41 | mpbid | ⊢ ( 𝜑  →  𝐹  ⇝  ( lim sup ‘ 𝐹 ) ) |