Step |
Hyp |
Ref |
Expression |
1 |
|
caurcvgr.1 |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
2 |
|
caurcvgr.2 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℝ ) |
3 |
|
caurcvgr.3 |
⊢ ( 𝜑 → sup ( 𝐴 , ℝ* , < ) = +∞ ) |
4 |
|
caurcvgr.4 |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝐴 ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ) |
5 |
|
1rp |
⊢ 1 ∈ ℝ+ |
6 |
5
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℝ+ ) |
7 |
1 2 3 4 6
|
caucvgrlem |
⊢ ( 𝜑 → ∃ 𝑗 ∈ 𝐴 ( ( lim sup ‘ 𝐹 ) ∈ ℝ ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ) < ( 3 · 1 ) ) ) ) |
8 |
|
simpl |
⊢ ( ( ( lim sup ‘ 𝐹 ) ∈ ℝ ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ) < ( 3 · 1 ) ) ) → ( lim sup ‘ 𝐹 ) ∈ ℝ ) |
9 |
8
|
rexlimivw |
⊢ ( ∃ 𝑗 ∈ 𝐴 ( ( lim sup ‘ 𝐹 ) ∈ ℝ ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ) < ( 3 · 1 ) ) ) → ( lim sup ‘ 𝐹 ) ∈ ℝ ) |
10 |
7 9
|
syl |
⊢ ( 𝜑 → ( lim sup ‘ 𝐹 ) ∈ ℝ ) |
11 |
10
|
recnd |
⊢ ( 𝜑 → ( lim sup ‘ 𝐹 ) ∈ ℂ ) |
12 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → 𝐴 ⊆ ℝ ) |
13 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → 𝐹 : 𝐴 ⟶ ℝ ) |
14 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → sup ( 𝐴 , ℝ* , < ) = +∞ ) |
15 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝐴 ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ) |
16 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → 𝑦 ∈ ℝ+ ) |
17 |
|
3rp |
⊢ 3 ∈ ℝ+ |
18 |
|
rpdivcl |
⊢ ( ( 𝑦 ∈ ℝ+ ∧ 3 ∈ ℝ+ ) → ( 𝑦 / 3 ) ∈ ℝ+ ) |
19 |
16 17 18
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( 𝑦 / 3 ) ∈ ℝ+ ) |
20 |
12 13 14 15 19
|
caucvgrlem |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ∃ 𝑗 ∈ 𝐴 ( ( lim sup ‘ 𝐹 ) ∈ ℝ ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ) < ( 3 · ( 𝑦 / 3 ) ) ) ) ) |
21 |
|
simpr |
⊢ ( ( ( lim sup ‘ 𝐹 ) ∈ ℝ ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ) < ( 3 · ( 𝑦 / 3 ) ) ) ) → ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ) < ( 3 · ( 𝑦 / 3 ) ) ) ) |
22 |
21
|
reximi |
⊢ ( ∃ 𝑗 ∈ 𝐴 ( ( lim sup ‘ 𝐹 ) ∈ ℝ ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ) < ( 3 · ( 𝑦 / 3 ) ) ) ) → ∃ 𝑗 ∈ 𝐴 ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ) < ( 3 · ( 𝑦 / 3 ) ) ) ) |
23 |
20 22
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ∃ 𝑗 ∈ 𝐴 ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ) < ( 3 · ( 𝑦 / 3 ) ) ) ) |
24 |
|
ssrexv |
⊢ ( 𝐴 ⊆ ℝ → ( ∃ 𝑗 ∈ 𝐴 ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ) < ( 3 · ( 𝑦 / 3 ) ) ) → ∃ 𝑗 ∈ ℝ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ) < ( 3 · ( 𝑦 / 3 ) ) ) ) ) |
25 |
12 23 24
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ∃ 𝑗 ∈ ℝ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ) < ( 3 · ( 𝑦 / 3 ) ) ) ) |
26 |
|
rpcn |
⊢ ( 𝑦 ∈ ℝ+ → 𝑦 ∈ ℂ ) |
27 |
26
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → 𝑦 ∈ ℂ ) |
28 |
|
3cn |
⊢ 3 ∈ ℂ |
29 |
28
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → 3 ∈ ℂ ) |
30 |
|
3ne0 |
⊢ 3 ≠ 0 |
31 |
30
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → 3 ≠ 0 ) |
32 |
27 29 31
|
divcan2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( 3 · ( 𝑦 / 3 ) ) = 𝑦 ) |
33 |
32
|
breq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ) < ( 3 · ( 𝑦 / 3 ) ) ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ) < 𝑦 ) ) |
34 |
33
|
imbi2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ) < ( 3 · ( 𝑦 / 3 ) ) ) ↔ ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ) < 𝑦 ) ) ) |
35 |
34
|
rexralbidv |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( ∃ 𝑗 ∈ ℝ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ) < ( 3 · ( 𝑦 / 3 ) ) ) ↔ ∃ 𝑗 ∈ ℝ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ) < 𝑦 ) ) ) |
36 |
25 35
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ∃ 𝑗 ∈ ℝ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ) < 𝑦 ) ) |
37 |
36
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ℝ+ ∃ 𝑗 ∈ ℝ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ) < 𝑦 ) ) |
38 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
39 |
|
fss |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ ℝ ⊆ ℂ ) → 𝐹 : 𝐴 ⟶ ℂ ) |
40 |
2 38 39
|
sylancl |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) |
41 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
42 |
40 1 41
|
rlim |
⊢ ( 𝜑 → ( 𝐹 ⇝𝑟 ( lim sup ‘ 𝐹 ) ↔ ( ( lim sup ‘ 𝐹 ) ∈ ℂ ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑗 ∈ ℝ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ) < 𝑦 ) ) ) ) |
43 |
11 37 42
|
mpbir2and |
⊢ ( 𝜑 → 𝐹 ⇝𝑟 ( lim sup ‘ 𝐹 ) ) |