| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cayhamlem1.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
| 2 |
|
cayhamlem1.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
| 3 |
|
cayhamlem1.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 4 |
|
cayhamlem1.y |
⊢ 𝑌 = ( 𝑁 Mat 𝑃 ) |
| 5 |
|
cayhamlem1.r |
⊢ × = ( .r ‘ 𝑌 ) |
| 6 |
|
cayhamlem1.s |
⊢ − = ( -g ‘ 𝑌 ) |
| 7 |
|
cayhamlem1.0 |
⊢ 0 = ( 0g ‘ 𝑌 ) |
| 8 |
|
cayhamlem1.t |
⊢ 𝑇 = ( 𝑁 matToPolyMat 𝑅 ) |
| 9 |
|
cayhamlem1.g |
⊢ 𝐺 = ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ( 0 − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) , if ( 𝑛 = ( 𝑠 + 1 ) , ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) , if ( ( 𝑠 + 1 ) < 𝑛 , 0 , ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛 − 1 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) ) ) |
| 10 |
|
cayhamlem1.e |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑌 ) ) |
| 11 |
|
eqid |
⊢ ( +g ‘ 𝑌 ) = ( +g ‘ 𝑌 ) |
| 12 |
1 2 3 4 5 6 7 8 9 10 11
|
chfacfpmmulgsum2 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 𝑌 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑖 ) ) ) ) = ( ( 𝑌 Σg ( 𝑖 ∈ ( 1 ... 𝑠 ) ↦ ( ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) − ( ( ( 𝑖 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) ( +g ‘ 𝑌 ) ( ( ( ( 𝑠 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) ) |
| 13 |
|
elfzelz |
⊢ ( 𝑖 ∈ ( 1 ... 𝑠 ) → 𝑖 ∈ ℤ ) |
| 14 |
13
|
zcnd |
⊢ ( 𝑖 ∈ ( 1 ... 𝑠 ) → 𝑖 ∈ ℂ ) |
| 15 |
|
pncan1 |
⊢ ( 𝑖 ∈ ℂ → ( ( 𝑖 + 1 ) − 1 ) = 𝑖 ) |
| 16 |
14 15
|
syl |
⊢ ( 𝑖 ∈ ( 1 ... 𝑠 ) → ( ( 𝑖 + 1 ) − 1 ) = 𝑖 ) |
| 17 |
16
|
eqcomd |
⊢ ( 𝑖 ∈ ( 1 ... 𝑠 ) → 𝑖 = ( ( 𝑖 + 1 ) − 1 ) ) |
| 18 |
17
|
adantl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → 𝑖 = ( ( 𝑖 + 1 ) − 1 ) ) |
| 19 |
18
|
fveq2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → ( 𝑏 ‘ 𝑖 ) = ( 𝑏 ‘ ( ( 𝑖 + 1 ) − 1 ) ) ) |
| 20 |
19
|
fveq2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) = ( 𝑇 ‘ ( 𝑏 ‘ ( ( 𝑖 + 1 ) − 1 ) ) ) ) |
| 21 |
20
|
oveq2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → ( ( ( 𝑖 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) = ( ( ( 𝑖 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ ( ( 𝑖 + 1 ) − 1 ) ) ) ) ) |
| 22 |
21
|
oveq2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → ( ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) − ( ( ( 𝑖 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) = ( ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) − ( ( ( 𝑖 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ ( ( 𝑖 + 1 ) − 1 ) ) ) ) ) ) |
| 23 |
22
|
mpteq2dva |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝑖 ∈ ( 1 ... 𝑠 ) ↦ ( ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) − ( ( ( 𝑖 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) = ( 𝑖 ∈ ( 1 ... 𝑠 ) ↦ ( ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) − ( ( ( 𝑖 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ ( ( 𝑖 + 1 ) − 1 ) ) ) ) ) ) ) |
| 24 |
23
|
oveq2d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝑌 Σg ( 𝑖 ∈ ( 1 ... 𝑠 ) ↦ ( ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) − ( ( ( 𝑖 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) = ( 𝑌 Σg ( 𝑖 ∈ ( 1 ... 𝑠 ) ↦ ( ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) − ( ( ( 𝑖 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ ( ( 𝑖 + 1 ) − 1 ) ) ) ) ) ) ) ) |
| 25 |
24
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 𝑌 Σg ( 𝑖 ∈ ( 1 ... 𝑠 ) ↦ ( ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) − ( ( ( 𝑖 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) = ( 𝑌 Σg ( 𝑖 ∈ ( 1 ... 𝑠 ) ↦ ( ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) − ( ( ( 𝑖 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ ( ( 𝑖 + 1 ) − 1 ) ) ) ) ) ) ) ) |
| 26 |
|
eqid |
⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) |
| 27 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
| 28 |
27
|
anim2i |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ) |
| 29 |
28
|
3adant3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ) |
| 30 |
3 4
|
pmatring |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑌 ∈ Ring ) |
| 31 |
29 30
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑌 ∈ Ring ) |
| 32 |
|
ringabl |
⊢ ( 𝑌 ∈ Ring → 𝑌 ∈ Abel ) |
| 33 |
31 32
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑌 ∈ Abel ) |
| 34 |
33
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → 𝑌 ∈ Abel ) |
| 35 |
|
elnnuz |
⊢ ( 𝑠 ∈ ℕ ↔ 𝑠 ∈ ( ℤ≥ ‘ 1 ) ) |
| 36 |
35
|
biimpi |
⊢ ( 𝑠 ∈ ℕ → 𝑠 ∈ ( ℤ≥ ‘ 1 ) ) |
| 37 |
36
|
ad2antrl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → 𝑠 ∈ ( ℤ≥ ‘ 1 ) ) |
| 38 |
31
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → 𝑌 ∈ Ring ) |
| 39 |
38
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑘 ∈ ( 1 ... ( 𝑠 + 1 ) ) ) → 𝑌 ∈ Ring ) |
| 40 |
28 30
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑌 ∈ Ring ) |
| 41 |
40
|
3adant3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑌 ∈ Ring ) |
| 42 |
|
eqid |
⊢ ( mulGrp ‘ 𝑌 ) = ( mulGrp ‘ 𝑌 ) |
| 43 |
42
|
ringmgp |
⊢ ( 𝑌 ∈ Ring → ( mulGrp ‘ 𝑌 ) ∈ Mnd ) |
| 44 |
41 43
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( mulGrp ‘ 𝑌 ) ∈ Mnd ) |
| 45 |
44
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( mulGrp ‘ 𝑌 ) ∈ Mnd ) |
| 46 |
45
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑘 ∈ ( 1 ... ( 𝑠 + 1 ) ) ) → ( mulGrp ‘ 𝑌 ) ∈ Mnd ) |
| 47 |
|
mndmgm |
⊢ ( ( mulGrp ‘ 𝑌 ) ∈ Mnd → ( mulGrp ‘ 𝑌 ) ∈ Mgm ) |
| 48 |
46 47
|
syl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑘 ∈ ( 1 ... ( 𝑠 + 1 ) ) ) → ( mulGrp ‘ 𝑌 ) ∈ Mgm ) |
| 49 |
|
elfznn |
⊢ ( 𝑘 ∈ ( 1 ... ( 𝑠 + 1 ) ) → 𝑘 ∈ ℕ ) |
| 50 |
49
|
adantl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑘 ∈ ( 1 ... ( 𝑠 + 1 ) ) ) → 𝑘 ∈ ℕ ) |
| 51 |
8 1 2 3 4
|
mat2pmatbas |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( 𝑇 ‘ 𝑀 ) ∈ ( Base ‘ 𝑌 ) ) |
| 52 |
27 51
|
syl3an2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝑇 ‘ 𝑀 ) ∈ ( Base ‘ 𝑌 ) ) |
| 53 |
52
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 𝑇 ‘ 𝑀 ) ∈ ( Base ‘ 𝑌 ) ) |
| 54 |
53
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑘 ∈ ( 1 ... ( 𝑠 + 1 ) ) ) → ( 𝑇 ‘ 𝑀 ) ∈ ( Base ‘ 𝑌 ) ) |
| 55 |
42 26
|
mgpbas |
⊢ ( Base ‘ 𝑌 ) = ( Base ‘ ( mulGrp ‘ 𝑌 ) ) |
| 56 |
55 10
|
mulgnncl |
⊢ ( ( ( mulGrp ‘ 𝑌 ) ∈ Mgm ∧ 𝑘 ∈ ℕ ∧ ( 𝑇 ‘ 𝑀 ) ∈ ( Base ‘ 𝑌 ) ) → ( 𝑘 ↑ ( 𝑇 ‘ 𝑀 ) ) ∈ ( Base ‘ 𝑌 ) ) |
| 57 |
48 50 54 56
|
syl3anc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑘 ∈ ( 1 ... ( 𝑠 + 1 ) ) ) → ( 𝑘 ↑ ( 𝑇 ‘ 𝑀 ) ) ∈ ( Base ‘ 𝑌 ) ) |
| 58 |
|
simpl1 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → 𝑁 ∈ Fin ) |
| 59 |
58
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑘 ∈ ( 1 ... ( 𝑠 + 1 ) ) ) → 𝑁 ∈ Fin ) |
| 60 |
27
|
3ad2ant2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑅 ∈ Ring ) |
| 61 |
60
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → 𝑅 ∈ Ring ) |
| 62 |
61
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑘 ∈ ( 1 ... ( 𝑠 + 1 ) ) ) → 𝑅 ∈ Ring ) |
| 63 |
|
elmapi |
⊢ ( 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) → 𝑏 : ( 0 ... 𝑠 ) ⟶ 𝐵 ) |
| 64 |
63
|
adantl |
⊢ ( ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) → 𝑏 : ( 0 ... 𝑠 ) ⟶ 𝐵 ) |
| 65 |
64
|
adantl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → 𝑏 : ( 0 ... 𝑠 ) ⟶ 𝐵 ) |
| 66 |
65
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑘 ∈ ( 1 ... ( 𝑠 + 1 ) ) ) → 𝑏 : ( 0 ... 𝑠 ) ⟶ 𝐵 ) |
| 67 |
|
nnz |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℤ ) |
| 68 |
|
peano2nn |
⊢ ( 𝑠 ∈ ℕ → ( 𝑠 + 1 ) ∈ ℕ ) |
| 69 |
68
|
nnzd |
⊢ ( 𝑠 ∈ ℕ → ( 𝑠 + 1 ) ∈ ℤ ) |
| 70 |
|
elfzm1b |
⊢ ( ( 𝑘 ∈ ℤ ∧ ( 𝑠 + 1 ) ∈ ℤ ) → ( 𝑘 ∈ ( 1 ... ( 𝑠 + 1 ) ) ↔ ( 𝑘 − 1 ) ∈ ( 0 ... ( ( 𝑠 + 1 ) − 1 ) ) ) ) |
| 71 |
67 69 70
|
syl2an |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑠 ∈ ℕ ) → ( 𝑘 ∈ ( 1 ... ( 𝑠 + 1 ) ) ↔ ( 𝑘 − 1 ) ∈ ( 0 ... ( ( 𝑠 + 1 ) − 1 ) ) ) ) |
| 72 |
|
nncn |
⊢ ( 𝑠 ∈ ℕ → 𝑠 ∈ ℂ ) |
| 73 |
|
pncan1 |
⊢ ( 𝑠 ∈ ℂ → ( ( 𝑠 + 1 ) − 1 ) = 𝑠 ) |
| 74 |
72 73
|
syl |
⊢ ( 𝑠 ∈ ℕ → ( ( 𝑠 + 1 ) − 1 ) = 𝑠 ) |
| 75 |
74
|
adantl |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑠 ∈ ℕ ) → ( ( 𝑠 + 1 ) − 1 ) = 𝑠 ) |
| 76 |
75
|
oveq2d |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑠 ∈ ℕ ) → ( 0 ... ( ( 𝑠 + 1 ) − 1 ) ) = ( 0 ... 𝑠 ) ) |
| 77 |
76
|
eleq2d |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑠 ∈ ℕ ) → ( ( 𝑘 − 1 ) ∈ ( 0 ... ( ( 𝑠 + 1 ) − 1 ) ) ↔ ( 𝑘 − 1 ) ∈ ( 0 ... 𝑠 ) ) ) |
| 78 |
77
|
biimpd |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑠 ∈ ℕ ) → ( ( 𝑘 − 1 ) ∈ ( 0 ... ( ( 𝑠 + 1 ) − 1 ) ) → ( 𝑘 − 1 ) ∈ ( 0 ... 𝑠 ) ) ) |
| 79 |
71 78
|
sylbid |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑠 ∈ ℕ ) → ( 𝑘 ∈ ( 1 ... ( 𝑠 + 1 ) ) → ( 𝑘 − 1 ) ∈ ( 0 ... 𝑠 ) ) ) |
| 80 |
79
|
expcom |
⊢ ( 𝑠 ∈ ℕ → ( 𝑘 ∈ ℕ → ( 𝑘 ∈ ( 1 ... ( 𝑠 + 1 ) ) → ( 𝑘 − 1 ) ∈ ( 0 ... 𝑠 ) ) ) ) |
| 81 |
80
|
com13 |
⊢ ( 𝑘 ∈ ( 1 ... ( 𝑠 + 1 ) ) → ( 𝑘 ∈ ℕ → ( 𝑠 ∈ ℕ → ( 𝑘 − 1 ) ∈ ( 0 ... 𝑠 ) ) ) ) |
| 82 |
49 81
|
mpd |
⊢ ( 𝑘 ∈ ( 1 ... ( 𝑠 + 1 ) ) → ( 𝑠 ∈ ℕ → ( 𝑘 − 1 ) ∈ ( 0 ... 𝑠 ) ) ) |
| 83 |
82
|
com12 |
⊢ ( 𝑠 ∈ ℕ → ( 𝑘 ∈ ( 1 ... ( 𝑠 + 1 ) ) → ( 𝑘 − 1 ) ∈ ( 0 ... 𝑠 ) ) ) |
| 84 |
83
|
ad2antrl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 𝑘 ∈ ( 1 ... ( 𝑠 + 1 ) ) → ( 𝑘 − 1 ) ∈ ( 0 ... 𝑠 ) ) ) |
| 85 |
84
|
imp |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑘 ∈ ( 1 ... ( 𝑠 + 1 ) ) ) → ( 𝑘 − 1 ) ∈ ( 0 ... 𝑠 ) ) |
| 86 |
66 85
|
ffvelcdmd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑘 ∈ ( 1 ... ( 𝑠 + 1 ) ) ) → ( 𝑏 ‘ ( 𝑘 − 1 ) ) ∈ 𝐵 ) |
| 87 |
8 1 2 3 4
|
mat2pmatbas |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ ( 𝑏 ‘ ( 𝑘 − 1 ) ) ∈ 𝐵 ) → ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) ∈ ( Base ‘ 𝑌 ) ) |
| 88 |
59 62 86 87
|
syl3anc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑘 ∈ ( 1 ... ( 𝑠 + 1 ) ) ) → ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) ∈ ( Base ‘ 𝑌 ) ) |
| 89 |
26 5
|
ringcl |
⊢ ( ( 𝑌 ∈ Ring ∧ ( 𝑘 ↑ ( 𝑇 ‘ 𝑀 ) ) ∈ ( Base ‘ 𝑌 ) ∧ ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) ∈ ( Base ‘ 𝑌 ) ) → ( ( 𝑘 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) ) ∈ ( Base ‘ 𝑌 ) ) |
| 90 |
39 57 88 89
|
syl3anc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑘 ∈ ( 1 ... ( 𝑠 + 1 ) ) ) → ( ( 𝑘 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) ) ∈ ( Base ‘ 𝑌 ) ) |
| 91 |
90
|
ralrimiva |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ∀ 𝑘 ∈ ( 1 ... ( 𝑠 + 1 ) ) ( ( 𝑘 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) ) ∈ ( Base ‘ 𝑌 ) ) |
| 92 |
|
oveq1 |
⊢ ( 𝑘 = 𝑖 → ( 𝑘 ↑ ( 𝑇 ‘ 𝑀 ) ) = ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) ) |
| 93 |
|
fvoveq1 |
⊢ ( 𝑘 = 𝑖 → ( 𝑏 ‘ ( 𝑘 − 1 ) ) = ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) |
| 94 |
93
|
fveq2d |
⊢ ( 𝑘 = 𝑖 → ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) = ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) |
| 95 |
92 94
|
oveq12d |
⊢ ( 𝑘 = 𝑖 → ( ( 𝑘 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) ) = ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) ) |
| 96 |
|
oveq1 |
⊢ ( 𝑘 = ( 𝑖 + 1 ) → ( 𝑘 ↑ ( 𝑇 ‘ 𝑀 ) ) = ( ( 𝑖 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) ) |
| 97 |
|
fvoveq1 |
⊢ ( 𝑘 = ( 𝑖 + 1 ) → ( 𝑏 ‘ ( 𝑘 − 1 ) ) = ( 𝑏 ‘ ( ( 𝑖 + 1 ) − 1 ) ) ) |
| 98 |
97
|
fveq2d |
⊢ ( 𝑘 = ( 𝑖 + 1 ) → ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) = ( 𝑇 ‘ ( 𝑏 ‘ ( ( 𝑖 + 1 ) − 1 ) ) ) ) |
| 99 |
96 98
|
oveq12d |
⊢ ( 𝑘 = ( 𝑖 + 1 ) → ( ( 𝑘 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) ) = ( ( ( 𝑖 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ ( ( 𝑖 + 1 ) − 1 ) ) ) ) ) |
| 100 |
|
oveq1 |
⊢ ( 𝑘 = 1 → ( 𝑘 ↑ ( 𝑇 ‘ 𝑀 ) ) = ( 1 ↑ ( 𝑇 ‘ 𝑀 ) ) ) |
| 101 |
|
fvoveq1 |
⊢ ( 𝑘 = 1 → ( 𝑏 ‘ ( 𝑘 − 1 ) ) = ( 𝑏 ‘ ( 1 − 1 ) ) ) |
| 102 |
101
|
fveq2d |
⊢ ( 𝑘 = 1 → ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) = ( 𝑇 ‘ ( 𝑏 ‘ ( 1 − 1 ) ) ) ) |
| 103 |
100 102
|
oveq12d |
⊢ ( 𝑘 = 1 → ( ( 𝑘 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) ) = ( ( 1 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ ( 1 − 1 ) ) ) ) ) |
| 104 |
|
oveq1 |
⊢ ( 𝑘 = ( 𝑠 + 1 ) → ( 𝑘 ↑ ( 𝑇 ‘ 𝑀 ) ) = ( ( 𝑠 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) ) |
| 105 |
|
fvoveq1 |
⊢ ( 𝑘 = ( 𝑠 + 1 ) → ( 𝑏 ‘ ( 𝑘 − 1 ) ) = ( 𝑏 ‘ ( ( 𝑠 + 1 ) − 1 ) ) ) |
| 106 |
105
|
fveq2d |
⊢ ( 𝑘 = ( 𝑠 + 1 ) → ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) = ( 𝑇 ‘ ( 𝑏 ‘ ( ( 𝑠 + 1 ) − 1 ) ) ) ) |
| 107 |
104 106
|
oveq12d |
⊢ ( 𝑘 = ( 𝑠 + 1 ) → ( ( 𝑘 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑘 − 1 ) ) ) ) = ( ( ( 𝑠 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ ( ( 𝑠 + 1 ) − 1 ) ) ) ) ) |
| 108 |
26 34 6 37 91 95 99 103 107
|
telgsumfz |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 𝑌 Σg ( 𝑖 ∈ ( 1 ... 𝑠 ) ↦ ( ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) − ( ( ( 𝑖 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ ( ( 𝑖 + 1 ) − 1 ) ) ) ) ) ) ) = ( ( ( 1 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ ( 1 − 1 ) ) ) ) − ( ( ( 𝑠 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ ( ( 𝑠 + 1 ) − 1 ) ) ) ) ) ) |
| 109 |
25 108
|
eqtrd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 𝑌 Σg ( 𝑖 ∈ ( 1 ... 𝑠 ) ↦ ( ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) − ( ( ( 𝑖 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) = ( ( ( 1 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ ( 1 − 1 ) ) ) ) − ( ( ( 𝑠 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ ( ( 𝑠 + 1 ) − 1 ) ) ) ) ) ) |
| 110 |
109
|
oveq1d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( ( 𝑌 Σg ( 𝑖 ∈ ( 1 ... 𝑠 ) ↦ ( ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) − ( ( ( 𝑖 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) ( +g ‘ 𝑌 ) ( ( ( ( 𝑠 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) = ( ( ( ( 1 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ ( 1 − 1 ) ) ) ) − ( ( ( 𝑠 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ ( ( 𝑠 + 1 ) − 1 ) ) ) ) ) ( +g ‘ 𝑌 ) ( ( ( ( 𝑠 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) ) |
| 111 |
55 10
|
mulg1 |
⊢ ( ( 𝑇 ‘ 𝑀 ) ∈ ( Base ‘ 𝑌 ) → ( 1 ↑ ( 𝑇 ‘ 𝑀 ) ) = ( 𝑇 ‘ 𝑀 ) ) |
| 112 |
52 111
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 1 ↑ ( 𝑇 ‘ 𝑀 ) ) = ( 𝑇 ‘ 𝑀 ) ) |
| 113 |
112
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 1 ↑ ( 𝑇 ‘ 𝑀 ) ) = ( 𝑇 ‘ 𝑀 ) ) |
| 114 |
|
1cnd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → 1 ∈ ℂ ) |
| 115 |
114
|
subidd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 1 − 1 ) = 0 ) |
| 116 |
115
|
fveq2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 𝑏 ‘ ( 1 − 1 ) ) = ( 𝑏 ‘ 0 ) ) |
| 117 |
116
|
fveq2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 𝑇 ‘ ( 𝑏 ‘ ( 1 − 1 ) ) ) = ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) |
| 118 |
113 117
|
oveq12d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( ( 1 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ ( 1 − 1 ) ) ) ) = ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) |
| 119 |
72
|
ad2antrl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → 𝑠 ∈ ℂ ) |
| 120 |
119 114
|
pncand |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( ( 𝑠 + 1 ) − 1 ) = 𝑠 ) |
| 121 |
120
|
fveq2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 𝑏 ‘ ( ( 𝑠 + 1 ) − 1 ) ) = ( 𝑏 ‘ 𝑠 ) ) |
| 122 |
121
|
fveq2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 𝑇 ‘ ( 𝑏 ‘ ( ( 𝑠 + 1 ) − 1 ) ) ) = ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ) |
| 123 |
122
|
oveq2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( ( ( 𝑠 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ ( ( 𝑠 + 1 ) − 1 ) ) ) ) = ( ( ( 𝑠 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ) ) |
| 124 |
118 123
|
oveq12d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( ( ( 1 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ ( 1 − 1 ) ) ) ) − ( ( ( 𝑠 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ ( ( 𝑠 + 1 ) − 1 ) ) ) ) ) = ( ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) − ( ( ( 𝑠 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ) ) ) |
| 125 |
124
|
oveq1d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( ( ( ( 1 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ ( 1 − 1 ) ) ) ) − ( ( ( 𝑠 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ ( ( 𝑠 + 1 ) − 1 ) ) ) ) ) ( +g ‘ 𝑌 ) ( ( ( ( 𝑠 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) = ( ( ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) − ( ( ( 𝑠 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ) ) ( +g ‘ 𝑌 ) ( ( ( ( 𝑠 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) ) |
| 126 |
|
ringgrp |
⊢ ( 𝑌 ∈ Ring → 𝑌 ∈ Grp ) |
| 127 |
31 126
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑌 ∈ Grp ) |
| 128 |
127
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → 𝑌 ∈ Grp ) |
| 129 |
|
nnnn0 |
⊢ ( 𝑠 ∈ ℕ → 𝑠 ∈ ℕ0 ) |
| 130 |
|
0elfz |
⊢ ( 𝑠 ∈ ℕ0 → 0 ∈ ( 0 ... 𝑠 ) ) |
| 131 |
129 130
|
syl |
⊢ ( 𝑠 ∈ ℕ → 0 ∈ ( 0 ... 𝑠 ) ) |
| 132 |
131
|
ad2antrl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → 0 ∈ ( 0 ... 𝑠 ) ) |
| 133 |
65 132
|
ffvelcdmd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 𝑏 ‘ 0 ) ∈ 𝐵 ) |
| 134 |
8 1 2 3 4
|
mat2pmatbas |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ ( 𝑏 ‘ 0 ) ∈ 𝐵 ) → ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ∈ ( Base ‘ 𝑌 ) ) |
| 135 |
58 61 133 134
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ∈ ( Base ‘ 𝑌 ) ) |
| 136 |
26 5
|
ringcl |
⊢ ( ( 𝑌 ∈ Ring ∧ ( 𝑇 ‘ 𝑀 ) ∈ ( Base ‘ 𝑌 ) ∧ ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ∈ ( Base ‘ 𝑌 ) ) → ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ∈ ( Base ‘ 𝑌 ) ) |
| 137 |
38 53 135 136
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ∈ ( Base ‘ 𝑌 ) ) |
| 138 |
45 47
|
syl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( mulGrp ‘ 𝑌 ) ∈ Mgm ) |
| 139 |
|
simprl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → 𝑠 ∈ ℕ ) |
| 140 |
139
|
peano2nnd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 𝑠 + 1 ) ∈ ℕ ) |
| 141 |
55 10
|
mulgnncl |
⊢ ( ( ( mulGrp ‘ 𝑌 ) ∈ Mgm ∧ ( 𝑠 + 1 ) ∈ ℕ ∧ ( 𝑇 ‘ 𝑀 ) ∈ ( Base ‘ 𝑌 ) ) → ( ( 𝑠 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) ∈ ( Base ‘ 𝑌 ) ) |
| 142 |
138 140 53 141
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( ( 𝑠 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) ∈ ( Base ‘ 𝑌 ) ) |
| 143 |
|
nn0fz0 |
⊢ ( 𝑠 ∈ ℕ0 ↔ 𝑠 ∈ ( 0 ... 𝑠 ) ) |
| 144 |
129 143
|
sylib |
⊢ ( 𝑠 ∈ ℕ → 𝑠 ∈ ( 0 ... 𝑠 ) ) |
| 145 |
144
|
ad2antrl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → 𝑠 ∈ ( 0 ... 𝑠 ) ) |
| 146 |
65 145
|
ffvelcdmd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 𝑏 ‘ 𝑠 ) ∈ 𝐵 ) |
| 147 |
8 1 2 3 4
|
mat2pmatbas |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ ( 𝑏 ‘ 𝑠 ) ∈ 𝐵 ) → ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ∈ ( Base ‘ 𝑌 ) ) |
| 148 |
58 61 146 147
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ∈ ( Base ‘ 𝑌 ) ) |
| 149 |
26 5
|
ringcl |
⊢ ( ( 𝑌 ∈ Ring ∧ ( ( 𝑠 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) ∈ ( Base ‘ 𝑌 ) ∧ ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ∈ ( Base ‘ 𝑌 ) ) → ( ( ( 𝑠 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ) ∈ ( Base ‘ 𝑌 ) ) |
| 150 |
38 142 148 149
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( ( ( 𝑠 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ) ∈ ( Base ‘ 𝑌 ) ) |
| 151 |
26 11 6 7
|
grpnpncan0 |
⊢ ( ( 𝑌 ∈ Grp ∧ ( ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ∈ ( Base ‘ 𝑌 ) ∧ ( ( ( 𝑠 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ) ∈ ( Base ‘ 𝑌 ) ) ) → ( ( ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) − ( ( ( 𝑠 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ) ) ( +g ‘ 𝑌 ) ( ( ( ( 𝑠 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) = 0 ) |
| 152 |
128 137 150 151
|
syl12anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( ( ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) − ( ( ( 𝑠 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ) ) ( +g ‘ 𝑌 ) ( ( ( ( 𝑠 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) = 0 ) |
| 153 |
125 152
|
eqtrd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( ( ( ( 1 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ ( 1 − 1 ) ) ) ) − ( ( ( 𝑠 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ ( ( 𝑠 + 1 ) − 1 ) ) ) ) ) ( +g ‘ 𝑌 ) ( ( ( ( 𝑠 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) = 0 ) |
| 154 |
12 110 153
|
3eqtrd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 𝑌 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑖 ) ) ) ) = 0 ) |