Metamath Proof Explorer


Theorem cayhamlem3

Description: Lemma for cayhamlem4 . (Contributed by AV, 24-Nov-2019) (Revised by AV, 15-Dec-2019)

Ref Expression
Hypotheses chcoeffeq.a 𝐴 = ( 𝑁 Mat 𝑅 )
chcoeffeq.b 𝐵 = ( Base ‘ 𝐴 )
chcoeffeq.p 𝑃 = ( Poly1𝑅 )
chcoeffeq.y 𝑌 = ( 𝑁 Mat 𝑃 )
chcoeffeq.r × = ( .r𝑌 )
chcoeffeq.s = ( -g𝑌 )
chcoeffeq.0 0 = ( 0g𝑌 )
chcoeffeq.t 𝑇 = ( 𝑁 matToPolyMat 𝑅 )
chcoeffeq.c 𝐶 = ( 𝑁 CharPlyMat 𝑅 )
chcoeffeq.k 𝐾 = ( 𝐶𝑀 )
chcoeffeq.g 𝐺 = ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ( 0 ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) , if ( 𝑛 = ( 𝑠 + 1 ) , ( 𝑇 ‘ ( 𝑏𝑠 ) ) , if ( ( 𝑠 + 1 ) < 𝑛 , 0 , ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛 − 1 ) ) ) ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏𝑛 ) ) ) ) ) ) ) )
chcoeffeq.w 𝑊 = ( Base ‘ 𝑌 )
chcoeffeq.1 1 = ( 1r𝐴 )
chcoeffeq.m = ( ·𝑠𝐴 )
chcoeffeq.u 𝑈 = ( 𝑁 cPolyMatToMat 𝑅 )
cayhamlem.e1 = ( .g ‘ ( mulGrp ‘ 𝐴 ) )
cayhamlem.r · = ( .r𝐴 )
Assertion cayhamlem3 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ∃ 𝑠 ∈ ℕ ∃ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ( 𝐴 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1𝐾 ) ‘ 𝑛 ) ( 𝑛 𝑀 ) ) ) ) = ( 𝐴 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 𝑀 ) · ( 𝑈 ‘ ( 𝐺𝑛 ) ) ) ) ) )

Proof

Step Hyp Ref Expression
1 chcoeffeq.a 𝐴 = ( 𝑁 Mat 𝑅 )
2 chcoeffeq.b 𝐵 = ( Base ‘ 𝐴 )
3 chcoeffeq.p 𝑃 = ( Poly1𝑅 )
4 chcoeffeq.y 𝑌 = ( 𝑁 Mat 𝑃 )
5 chcoeffeq.r × = ( .r𝑌 )
6 chcoeffeq.s = ( -g𝑌 )
7 chcoeffeq.0 0 = ( 0g𝑌 )
8 chcoeffeq.t 𝑇 = ( 𝑁 matToPolyMat 𝑅 )
9 chcoeffeq.c 𝐶 = ( 𝑁 CharPlyMat 𝑅 )
10 chcoeffeq.k 𝐾 = ( 𝐶𝑀 )
11 chcoeffeq.g 𝐺 = ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ( 0 ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) , if ( 𝑛 = ( 𝑠 + 1 ) , ( 𝑇 ‘ ( 𝑏𝑠 ) ) , if ( ( 𝑠 + 1 ) < 𝑛 , 0 , ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛 − 1 ) ) ) ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏𝑛 ) ) ) ) ) ) ) )
12 chcoeffeq.w 𝑊 = ( Base ‘ 𝑌 )
13 chcoeffeq.1 1 = ( 1r𝐴 )
14 chcoeffeq.m = ( ·𝑠𝐴 )
15 chcoeffeq.u 𝑈 = ( 𝑁 cPolyMatToMat 𝑅 )
16 cayhamlem.e1 = ( .g ‘ ( mulGrp ‘ 𝐴 ) )
17 cayhamlem.r · = ( .r𝐴 )
18 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 chcoeffeq ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ∃ 𝑠 ∈ ℕ ∃ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ∀ 𝑛 ∈ ℕ0 ( 𝑈 ‘ ( 𝐺𝑛 ) ) = ( ( ( coe1𝐾 ) ‘ 𝑛 ) 1 ) )
19 2fveq3 ( 𝑛 = 𝑙 → ( 𝑈 ‘ ( 𝐺𝑛 ) ) = ( 𝑈 ‘ ( 𝐺𝑙 ) ) )
20 fveq2 ( 𝑛 = 𝑙 → ( ( coe1𝐾 ) ‘ 𝑛 ) = ( ( coe1𝐾 ) ‘ 𝑙 ) )
21 20 oveq1d ( 𝑛 = 𝑙 → ( ( ( coe1𝐾 ) ‘ 𝑛 ) 1 ) = ( ( ( coe1𝐾 ) ‘ 𝑙 ) 1 ) )
22 19 21 eqeq12d ( 𝑛 = 𝑙 → ( ( 𝑈 ‘ ( 𝐺𝑛 ) ) = ( ( ( coe1𝐾 ) ‘ 𝑛 ) 1 ) ↔ ( 𝑈 ‘ ( 𝐺𝑙 ) ) = ( ( ( coe1𝐾 ) ‘ 𝑙 ) 1 ) ) )
23 22 cbvralvw ( ∀ 𝑛 ∈ ℕ0 ( 𝑈 ‘ ( 𝐺𝑛 ) ) = ( ( ( coe1𝐾 ) ‘ 𝑛 ) 1 ) ↔ ∀ 𝑙 ∈ ℕ0 ( 𝑈 ‘ ( 𝐺𝑙 ) ) = ( ( ( coe1𝐾 ) ‘ 𝑙 ) 1 ) )
24 2fveq3 ( 𝑙 = 𝑛 → ( 𝑈 ‘ ( 𝐺𝑙 ) ) = ( 𝑈 ‘ ( 𝐺𝑛 ) ) )
25 fveq2 ( 𝑙 = 𝑛 → ( ( coe1𝐾 ) ‘ 𝑙 ) = ( ( coe1𝐾 ) ‘ 𝑛 ) )
26 25 oveq1d ( 𝑙 = 𝑛 → ( ( ( coe1𝐾 ) ‘ 𝑙 ) 1 ) = ( ( ( coe1𝐾 ) ‘ 𝑛 ) 1 ) )
27 24 26 eqeq12d ( 𝑙 = 𝑛 → ( ( 𝑈 ‘ ( 𝐺𝑙 ) ) = ( ( ( coe1𝐾 ) ‘ 𝑙 ) 1 ) ↔ ( 𝑈 ‘ ( 𝐺𝑛 ) ) = ( ( ( coe1𝐾 ) ‘ 𝑛 ) 1 ) ) )
28 27 rspccva ( ( ∀ 𝑙 ∈ ℕ0 ( 𝑈 ‘ ( 𝐺𝑙 ) ) = ( ( ( coe1𝐾 ) ‘ 𝑙 ) 1 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑈 ‘ ( 𝐺𝑛 ) ) = ( ( ( coe1𝐾 ) ‘ 𝑛 ) 1 ) )
29 simprll ( ( 𝑛 ∈ ℕ0 ∧ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) )
30 eqid ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 )
31 9 1 2 3 30 chpmatply1 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ( 𝐶𝑀 ) ∈ ( Base ‘ 𝑃 ) )
32 29 31 syl ( ( 𝑛 ∈ ℕ0 ∧ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) → ( 𝐶𝑀 ) ∈ ( Base ‘ 𝑃 ) )
33 10 32 eqeltrid ( ( 𝑛 ∈ ℕ0 ∧ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) → 𝐾 ∈ ( Base ‘ 𝑃 ) )
34 eqid ( coe1𝐾 ) = ( coe1𝐾 )
35 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
36 34 30 3 35 coe1f ( 𝐾 ∈ ( Base ‘ 𝑃 ) → ( coe1𝐾 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) )
37 33 36 syl ( ( 𝑛 ∈ ℕ0 ∧ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) → ( coe1𝐾 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) )
38 fvex ( Base ‘ 𝑅 ) ∈ V
39 nn0ex 0 ∈ V
40 38 39 pm3.2i ( ( Base ‘ 𝑅 ) ∈ V ∧ ℕ0 ∈ V )
41 elmapg ( ( ( Base ‘ 𝑅 ) ∈ V ∧ ℕ0 ∈ V ) → ( ( coe1𝐾 ) ∈ ( ( Base ‘ 𝑅 ) ↑m0 ) ↔ ( coe1𝐾 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) )
42 40 41 mp1i ( ( 𝑛 ∈ ℕ0 ∧ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) → ( ( coe1𝐾 ) ∈ ( ( Base ‘ 𝑅 ) ↑m0 ) ↔ ( coe1𝐾 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) )
43 37 42 mpbird ( ( 𝑛 ∈ ℕ0 ∧ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) → ( coe1𝐾 ) ∈ ( ( Base ‘ 𝑅 ) ↑m0 ) )
44 simpl ( ( 𝑛 ∈ ℕ0 ∧ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) → 𝑛 ∈ ℕ0 )
45 35 1 2 13 14 16 17 cayhamlem2 ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( ( coe1𝐾 ) ∈ ( ( Base ‘ 𝑅 ) ↑m0 ) ∧ 𝑛 ∈ ℕ0 ) ) → ( ( ( coe1𝐾 ) ‘ 𝑛 ) ( 𝑛 𝑀 ) ) = ( ( 𝑛 𝑀 ) · ( ( ( coe1𝐾 ) ‘ 𝑛 ) 1 ) ) )
46 29 43 44 45 syl12anc ( ( 𝑛 ∈ ℕ0 ∧ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) → ( ( ( coe1𝐾 ) ‘ 𝑛 ) ( 𝑛 𝑀 ) ) = ( ( 𝑛 𝑀 ) · ( ( ( coe1𝐾 ) ‘ 𝑛 ) 1 ) ) )
47 46 adantl ( ( ( 𝑈 ‘ ( 𝐺𝑛 ) ) = ( ( ( coe1𝐾 ) ‘ 𝑛 ) 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ) → ( ( ( coe1𝐾 ) ‘ 𝑛 ) ( 𝑛 𝑀 ) ) = ( ( 𝑛 𝑀 ) · ( ( ( coe1𝐾 ) ‘ 𝑛 ) 1 ) ) )
48 oveq2 ( ( 𝑈 ‘ ( 𝐺𝑛 ) ) = ( ( ( coe1𝐾 ) ‘ 𝑛 ) 1 ) → ( ( 𝑛 𝑀 ) · ( 𝑈 ‘ ( 𝐺𝑛 ) ) ) = ( ( 𝑛 𝑀 ) · ( ( ( coe1𝐾 ) ‘ 𝑛 ) 1 ) ) )
49 48 adantr ( ( ( 𝑈 ‘ ( 𝐺𝑛 ) ) = ( ( ( coe1𝐾 ) ‘ 𝑛 ) 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ) → ( ( 𝑛 𝑀 ) · ( 𝑈 ‘ ( 𝐺𝑛 ) ) ) = ( ( 𝑛 𝑀 ) · ( ( ( coe1𝐾 ) ‘ 𝑛 ) 1 ) ) )
50 47 49 eqtr4d ( ( ( 𝑈 ‘ ( 𝐺𝑛 ) ) = ( ( ( coe1𝐾 ) ‘ 𝑛 ) 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ) → ( ( ( coe1𝐾 ) ‘ 𝑛 ) ( 𝑛 𝑀 ) ) = ( ( 𝑛 𝑀 ) · ( 𝑈 ‘ ( 𝐺𝑛 ) ) ) )
51 50 exp32 ( ( 𝑈 ‘ ( 𝐺𝑛 ) ) = ( ( ( coe1𝐾 ) ‘ 𝑛 ) 1 ) → ( 𝑛 ∈ ℕ0 → ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) → ( ( ( coe1𝐾 ) ‘ 𝑛 ) ( 𝑛 𝑀 ) ) = ( ( 𝑛 𝑀 ) · ( 𝑈 ‘ ( 𝐺𝑛 ) ) ) ) ) )
52 51 com12 ( 𝑛 ∈ ℕ0 → ( ( 𝑈 ‘ ( 𝐺𝑛 ) ) = ( ( ( coe1𝐾 ) ‘ 𝑛 ) 1 ) → ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) → ( ( ( coe1𝐾 ) ‘ 𝑛 ) ( 𝑛 𝑀 ) ) = ( ( 𝑛 𝑀 ) · ( 𝑈 ‘ ( 𝐺𝑛 ) ) ) ) ) )
53 52 adantl ( ( ∀ 𝑙 ∈ ℕ0 ( 𝑈 ‘ ( 𝐺𝑙 ) ) = ( ( ( coe1𝐾 ) ‘ 𝑙 ) 1 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑈 ‘ ( 𝐺𝑛 ) ) = ( ( ( coe1𝐾 ) ‘ 𝑛 ) 1 ) → ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) → ( ( ( coe1𝐾 ) ‘ 𝑛 ) ( 𝑛 𝑀 ) ) = ( ( 𝑛 𝑀 ) · ( 𝑈 ‘ ( 𝐺𝑛 ) ) ) ) ) )
54 28 53 mpd ( ( ∀ 𝑙 ∈ ℕ0 ( 𝑈 ‘ ( 𝐺𝑙 ) ) = ( ( ( coe1𝐾 ) ‘ 𝑙 ) 1 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) → ( ( ( coe1𝐾 ) ‘ 𝑛 ) ( 𝑛 𝑀 ) ) = ( ( 𝑛 𝑀 ) · ( 𝑈 ‘ ( 𝐺𝑛 ) ) ) ) )
55 54 com12 ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) → ( ( ∀ 𝑙 ∈ ℕ0 ( 𝑈 ‘ ( 𝐺𝑙 ) ) = ( ( ( coe1𝐾 ) ‘ 𝑙 ) 1 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( ( coe1𝐾 ) ‘ 𝑛 ) ( 𝑛 𝑀 ) ) = ( ( 𝑛 𝑀 ) · ( 𝑈 ‘ ( 𝐺𝑛 ) ) ) ) )
56 55 impl ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ∧ ∀ 𝑙 ∈ ℕ0 ( 𝑈 ‘ ( 𝐺𝑙 ) ) = ( ( ( coe1𝐾 ) ‘ 𝑙 ) 1 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( ( coe1𝐾 ) ‘ 𝑛 ) ( 𝑛 𝑀 ) ) = ( ( 𝑛 𝑀 ) · ( 𝑈 ‘ ( 𝐺𝑛 ) ) ) )
57 56 mpteq2dva ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ∧ ∀ 𝑙 ∈ ℕ0 ( 𝑈 ‘ ( 𝐺𝑙 ) ) = ( ( ( coe1𝐾 ) ‘ 𝑙 ) 1 ) ) → ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1𝐾 ) ‘ 𝑛 ) ( 𝑛 𝑀 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 𝑀 ) · ( 𝑈 ‘ ( 𝐺𝑛 ) ) ) ) )
58 57 oveq2d ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ∧ ∀ 𝑙 ∈ ℕ0 ( 𝑈 ‘ ( 𝐺𝑙 ) ) = ( ( ( coe1𝐾 ) ‘ 𝑙 ) 1 ) ) → ( 𝐴 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1𝐾 ) ‘ 𝑛 ) ( 𝑛 𝑀 ) ) ) ) = ( 𝐴 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 𝑀 ) · ( 𝑈 ‘ ( 𝐺𝑛 ) ) ) ) ) )
59 58 ex ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) → ( ∀ 𝑙 ∈ ℕ0 ( 𝑈 ‘ ( 𝐺𝑙 ) ) = ( ( ( coe1𝐾 ) ‘ 𝑙 ) 1 ) → ( 𝐴 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1𝐾 ) ‘ 𝑛 ) ( 𝑛 𝑀 ) ) ) ) = ( 𝐴 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 𝑀 ) · ( 𝑈 ‘ ( 𝐺𝑛 ) ) ) ) ) ) )
60 23 59 syl5bi ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) → ( ∀ 𝑛 ∈ ℕ0 ( 𝑈 ‘ ( 𝐺𝑛 ) ) = ( ( ( coe1𝐾 ) ‘ 𝑛 ) 1 ) → ( 𝐴 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1𝐾 ) ‘ 𝑛 ) ( 𝑛 𝑀 ) ) ) ) = ( 𝐴 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 𝑀 ) · ( 𝑈 ‘ ( 𝐺𝑛 ) ) ) ) ) ) )
61 60 reximdva ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ 𝑠 ∈ ℕ ) → ( ∃ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ∀ 𝑛 ∈ ℕ0 ( 𝑈 ‘ ( 𝐺𝑛 ) ) = ( ( ( coe1𝐾 ) ‘ 𝑛 ) 1 ) → ∃ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ( 𝐴 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1𝐾 ) ‘ 𝑛 ) ( 𝑛 𝑀 ) ) ) ) = ( 𝐴 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 𝑀 ) · ( 𝑈 ‘ ( 𝐺𝑛 ) ) ) ) ) ) )
62 61 reximdva ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ( ∃ 𝑠 ∈ ℕ ∃ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ∀ 𝑛 ∈ ℕ0 ( 𝑈 ‘ ( 𝐺𝑛 ) ) = ( ( ( coe1𝐾 ) ‘ 𝑛 ) 1 ) → ∃ 𝑠 ∈ ℕ ∃ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ( 𝐴 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1𝐾 ) ‘ 𝑛 ) ( 𝑛 𝑀 ) ) ) ) = ( 𝐴 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 𝑀 ) · ( 𝑈 ‘ ( 𝐺𝑛 ) ) ) ) ) ) )
63 18 62 mpd ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ∃ 𝑠 ∈ ℕ ∃ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ( 𝐴 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1𝐾 ) ‘ 𝑛 ) ( 𝑛 𝑀 ) ) ) ) = ( 𝐴 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 𝑀 ) · ( 𝑈 ‘ ( 𝐺𝑛 ) ) ) ) ) )