Step |
Hyp |
Ref |
Expression |
1 |
|
chcoeffeq.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
2 |
|
chcoeffeq.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
3 |
|
chcoeffeq.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
4 |
|
chcoeffeq.y |
⊢ 𝑌 = ( 𝑁 Mat 𝑃 ) |
5 |
|
chcoeffeq.r |
⊢ × = ( .r ‘ 𝑌 ) |
6 |
|
chcoeffeq.s |
⊢ − = ( -g ‘ 𝑌 ) |
7 |
|
chcoeffeq.0 |
⊢ 0 = ( 0g ‘ 𝑌 ) |
8 |
|
chcoeffeq.t |
⊢ 𝑇 = ( 𝑁 matToPolyMat 𝑅 ) |
9 |
|
chcoeffeq.c |
⊢ 𝐶 = ( 𝑁 CharPlyMat 𝑅 ) |
10 |
|
chcoeffeq.k |
⊢ 𝐾 = ( 𝐶 ‘ 𝑀 ) |
11 |
|
chcoeffeq.g |
⊢ 𝐺 = ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ( 0 − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) , if ( 𝑛 = ( 𝑠 + 1 ) , ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) , if ( ( 𝑠 + 1 ) < 𝑛 , 0 , ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛 − 1 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) ) ) |
12 |
|
chcoeffeq.w |
⊢ 𝑊 = ( Base ‘ 𝑌 ) |
13 |
|
chcoeffeq.1 |
⊢ 1 = ( 1r ‘ 𝐴 ) |
14 |
|
chcoeffeq.m |
⊢ ∗ = ( ·𝑠 ‘ 𝐴 ) |
15 |
|
chcoeffeq.u |
⊢ 𝑈 = ( 𝑁 cPolyMatToMat 𝑅 ) |
16 |
|
cayhamlem.e1 |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝐴 ) ) |
17 |
|
cayhamlem.r |
⊢ · = ( .r ‘ 𝐴 ) |
18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
chcoeffeq |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ∃ 𝑠 ∈ ℕ ∃ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ∀ 𝑛 ∈ ℕ0 ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) = ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ 1 ) ) |
19 |
|
2fveq3 |
⊢ ( 𝑛 = 𝑙 → ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) = ( 𝑈 ‘ ( 𝐺 ‘ 𝑙 ) ) ) |
20 |
|
fveq2 |
⊢ ( 𝑛 = 𝑙 → ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) = ( ( coe1 ‘ 𝐾 ) ‘ 𝑙 ) ) |
21 |
20
|
oveq1d |
⊢ ( 𝑛 = 𝑙 → ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ 1 ) = ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑙 ) ∗ 1 ) ) |
22 |
19 21
|
eqeq12d |
⊢ ( 𝑛 = 𝑙 → ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) = ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ 1 ) ↔ ( 𝑈 ‘ ( 𝐺 ‘ 𝑙 ) ) = ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑙 ) ∗ 1 ) ) ) |
23 |
22
|
cbvralvw |
⊢ ( ∀ 𝑛 ∈ ℕ0 ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) = ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ 1 ) ↔ ∀ 𝑙 ∈ ℕ0 ( 𝑈 ‘ ( 𝐺 ‘ 𝑙 ) ) = ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑙 ) ∗ 1 ) ) |
24 |
|
2fveq3 |
⊢ ( 𝑙 = 𝑛 → ( 𝑈 ‘ ( 𝐺 ‘ 𝑙 ) ) = ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) |
25 |
|
fveq2 |
⊢ ( 𝑙 = 𝑛 → ( ( coe1 ‘ 𝐾 ) ‘ 𝑙 ) = ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ) |
26 |
25
|
oveq1d |
⊢ ( 𝑙 = 𝑛 → ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑙 ) ∗ 1 ) = ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ 1 ) ) |
27 |
24 26
|
eqeq12d |
⊢ ( 𝑙 = 𝑛 → ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑙 ) ) = ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑙 ) ∗ 1 ) ↔ ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) = ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ 1 ) ) ) |
28 |
27
|
rspccva |
⊢ ( ( ∀ 𝑙 ∈ ℕ0 ( 𝑈 ‘ ( 𝐺 ‘ 𝑙 ) ) = ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑙 ) ∗ 1 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) = ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ 1 ) ) |
29 |
|
simprll |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ) |
30 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
31 |
9 1 2 3 30
|
chpmatply1 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝐶 ‘ 𝑀 ) ∈ ( Base ‘ 𝑃 ) ) |
32 |
29 31
|
syl |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 𝐶 ‘ 𝑀 ) ∈ ( Base ‘ 𝑃 ) ) |
33 |
10 32
|
eqeltrid |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → 𝐾 ∈ ( Base ‘ 𝑃 ) ) |
34 |
|
eqid |
⊢ ( coe1 ‘ 𝐾 ) = ( coe1 ‘ 𝐾 ) |
35 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
36 |
34 30 3 35
|
coe1f |
⊢ ( 𝐾 ∈ ( Base ‘ 𝑃 ) → ( coe1 ‘ 𝐾 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) |
37 |
33 36
|
syl |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( coe1 ‘ 𝐾 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) |
38 |
|
fvex |
⊢ ( Base ‘ 𝑅 ) ∈ V |
39 |
|
nn0ex |
⊢ ℕ0 ∈ V |
40 |
38 39
|
pm3.2i |
⊢ ( ( Base ‘ 𝑅 ) ∈ V ∧ ℕ0 ∈ V ) |
41 |
|
elmapg |
⊢ ( ( ( Base ‘ 𝑅 ) ∈ V ∧ ℕ0 ∈ V ) → ( ( coe1 ‘ 𝐾 ) ∈ ( ( Base ‘ 𝑅 ) ↑m ℕ0 ) ↔ ( coe1 ‘ 𝐾 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) ) |
42 |
40 41
|
mp1i |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( ( coe1 ‘ 𝐾 ) ∈ ( ( Base ‘ 𝑅 ) ↑m ℕ0 ) ↔ ( coe1 ‘ 𝐾 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) ) |
43 |
37 42
|
mpbird |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( coe1 ‘ 𝐾 ) ∈ ( ( Base ‘ 𝑅 ) ↑m ℕ0 ) ) |
44 |
|
simpl |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → 𝑛 ∈ ℕ0 ) |
45 |
35 1 2 13 14 16 17
|
cayhamlem2 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( ( coe1 ‘ 𝐾 ) ∈ ( ( Base ‘ 𝑅 ) ↑m ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) ) → ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ ( 𝑛 ↑ 𝑀 ) ) = ( ( 𝑛 ↑ 𝑀 ) · ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ 1 ) ) ) |
46 |
29 43 44 45
|
syl12anc |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ ( 𝑛 ↑ 𝑀 ) ) = ( ( 𝑛 ↑ 𝑀 ) · ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ 1 ) ) ) |
47 |
46
|
adantl |
⊢ ( ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) = ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ) → ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ ( 𝑛 ↑ 𝑀 ) ) = ( ( 𝑛 ↑ 𝑀 ) · ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ 1 ) ) ) |
48 |
|
oveq2 |
⊢ ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) = ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ 1 ) → ( ( 𝑛 ↑ 𝑀 ) · ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) = ( ( 𝑛 ↑ 𝑀 ) · ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ 1 ) ) ) |
49 |
48
|
adantr |
⊢ ( ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) = ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ) → ( ( 𝑛 ↑ 𝑀 ) · ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) = ( ( 𝑛 ↑ 𝑀 ) · ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ 1 ) ) ) |
50 |
47 49
|
eqtr4d |
⊢ ( ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) = ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ) → ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ ( 𝑛 ↑ 𝑀 ) ) = ( ( 𝑛 ↑ 𝑀 ) · ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) |
51 |
50
|
exp32 |
⊢ ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) = ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ 1 ) → ( 𝑛 ∈ ℕ0 → ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) → ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ ( 𝑛 ↑ 𝑀 ) ) = ( ( 𝑛 ↑ 𝑀 ) · ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) ) |
52 |
51
|
com12 |
⊢ ( 𝑛 ∈ ℕ0 → ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) = ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ 1 ) → ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) → ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ ( 𝑛 ↑ 𝑀 ) ) = ( ( 𝑛 ↑ 𝑀 ) · ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) ) |
53 |
52
|
adantl |
⊢ ( ( ∀ 𝑙 ∈ ℕ0 ( 𝑈 ‘ ( 𝐺 ‘ 𝑙 ) ) = ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑙 ) ∗ 1 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) = ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ 1 ) → ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) → ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ ( 𝑛 ↑ 𝑀 ) ) = ( ( 𝑛 ↑ 𝑀 ) · ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) ) |
54 |
28 53
|
mpd |
⊢ ( ( ∀ 𝑙 ∈ ℕ0 ( 𝑈 ‘ ( 𝐺 ‘ 𝑙 ) ) = ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑙 ) ∗ 1 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) → ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ ( 𝑛 ↑ 𝑀 ) ) = ( ( 𝑛 ↑ 𝑀 ) · ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) |
55 |
54
|
com12 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) → ( ( ∀ 𝑙 ∈ ℕ0 ( 𝑈 ‘ ( 𝐺 ‘ 𝑙 ) ) = ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑙 ) ∗ 1 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ ( 𝑛 ↑ 𝑀 ) ) = ( ( 𝑛 ↑ 𝑀 ) · ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) |
56 |
55
|
impl |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ∧ ∀ 𝑙 ∈ ℕ0 ( 𝑈 ‘ ( 𝐺 ‘ 𝑙 ) ) = ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑙 ) ∗ 1 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ ( 𝑛 ↑ 𝑀 ) ) = ( ( 𝑛 ↑ 𝑀 ) · ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) |
57 |
56
|
mpteq2dva |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ∧ ∀ 𝑙 ∈ ℕ0 ( 𝑈 ‘ ( 𝐺 ‘ 𝑙 ) ) = ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑙 ) ∗ 1 ) ) → ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ ( 𝑛 ↑ 𝑀 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 ↑ 𝑀 ) · ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) |
58 |
57
|
oveq2d |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ∧ ∀ 𝑙 ∈ ℕ0 ( 𝑈 ‘ ( 𝐺 ‘ 𝑙 ) ) = ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑙 ) ∗ 1 ) ) → ( 𝐴 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ ( 𝑛 ↑ 𝑀 ) ) ) ) = ( 𝐴 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 ↑ 𝑀 ) · ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) ) |
59 |
58
|
ex |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) → ( ∀ 𝑙 ∈ ℕ0 ( 𝑈 ‘ ( 𝐺 ‘ 𝑙 ) ) = ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑙 ) ∗ 1 ) → ( 𝐴 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ ( 𝑛 ↑ 𝑀 ) ) ) ) = ( 𝐴 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 ↑ 𝑀 ) · ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) ) ) |
60 |
23 59
|
syl5bi |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) → ( ∀ 𝑛 ∈ ℕ0 ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) = ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ 1 ) → ( 𝐴 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ ( 𝑛 ↑ 𝑀 ) ) ) ) = ( 𝐴 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 ↑ 𝑀 ) · ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) ) ) |
61 |
60
|
reximdva |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) → ( ∃ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ∀ 𝑛 ∈ ℕ0 ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) = ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ 1 ) → ∃ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ( 𝐴 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ ( 𝑛 ↑ 𝑀 ) ) ) ) = ( 𝐴 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 ↑ 𝑀 ) · ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) ) ) |
62 |
61
|
reximdva |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( ∃ 𝑠 ∈ ℕ ∃ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ∀ 𝑛 ∈ ℕ0 ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) = ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ 1 ) → ∃ 𝑠 ∈ ℕ ∃ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ( 𝐴 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ ( 𝑛 ↑ 𝑀 ) ) ) ) = ( 𝐴 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 ↑ 𝑀 ) · ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) ) ) |
63 |
18 62
|
mpd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ∃ 𝑠 ∈ ℕ ∃ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ( 𝐴 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ ( 𝑛 ↑ 𝑀 ) ) ) ) = ( 𝐴 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 ↑ 𝑀 ) · ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) ) |