Step |
Hyp |
Ref |
Expression |
1 |
|
cayleyhamilton0.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
2 |
|
cayleyhamilton0.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
3 |
|
cayleyhamilton0.0 |
⊢ 0 = ( 0g ‘ 𝐴 ) |
4 |
|
cayleyhamilton0.1 |
⊢ 1 = ( 1r ‘ 𝐴 ) |
5 |
|
cayleyhamilton0.m |
⊢ ∗ = ( ·𝑠 ‘ 𝐴 ) |
6 |
|
cayleyhamilton0.e1 |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝐴 ) ) |
7 |
|
cayleyhamilton0.c |
⊢ 𝐶 = ( 𝑁 CharPlyMat 𝑅 ) |
8 |
|
cayleyhamilton0.k |
⊢ 𝐾 = ( coe1 ‘ ( 𝐶 ‘ 𝑀 ) ) |
9 |
|
cayleyhamilton0.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
10 |
|
cayleyhamilton0.y |
⊢ 𝑌 = ( 𝑁 Mat 𝑃 ) |
11 |
|
cayleyhamilton0.r |
⊢ × = ( .r ‘ 𝑌 ) |
12 |
|
cayleyhamilton0.s |
⊢ − = ( -g ‘ 𝑌 ) |
13 |
|
cayleyhamilton0.z |
⊢ 𝑍 = ( 0g ‘ 𝑌 ) |
14 |
|
cayleyhamilton0.w |
⊢ 𝑊 = ( Base ‘ 𝑌 ) |
15 |
|
cayleyhamilton0.e2 |
⊢ 𝐸 = ( .g ‘ ( mulGrp ‘ 𝑌 ) ) |
16 |
|
cayleyhamilton0.t |
⊢ 𝑇 = ( 𝑁 matToPolyMat 𝑅 ) |
17 |
|
cayleyhamilton0.g |
⊢ 𝐺 = ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ( 𝑍 − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) , if ( 𝑛 = ( 𝑠 + 1 ) , ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) , if ( ( 𝑠 + 1 ) < 𝑛 , 𝑍 , ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛 − 1 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) ) ) |
18 |
|
cayleyhamilton0.u |
⊢ 𝑈 = ( 𝑁 cPolyMatToMat 𝑅 ) |
19 |
|
eqid |
⊢ ( 𝐶 ‘ 𝑀 ) = ( 𝐶 ‘ 𝑀 ) |
20 |
1 2 9 10 11 12 13 16 7 19 17 14 4 5 18 6 15
|
cayhamlem4 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ∃ 𝑠 ∈ ℕ ∃ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ( 𝐴 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1 ‘ ( 𝐶 ‘ 𝑀 ) ) ‘ 𝑛 ) ∗ ( 𝑛 ↑ 𝑀 ) ) ) ) = ( 𝑈 ‘ ( 𝑌 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 𝐸 ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑛 ) ) ) ) ) ) |
21 |
8
|
eqcomi |
⊢ ( coe1 ‘ ( 𝐶 ‘ 𝑀 ) ) = 𝐾 |
22 |
21
|
a1i |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑛 ∈ ℕ0 ) → ( coe1 ‘ ( 𝐶 ‘ 𝑀 ) ) = 𝐾 ) |
23 |
22
|
fveq1d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝐶 ‘ 𝑀 ) ) ‘ 𝑛 ) = ( 𝐾 ‘ 𝑛 ) ) |
24 |
23
|
oveq1d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( ( coe1 ‘ ( 𝐶 ‘ 𝑀 ) ) ‘ 𝑛 ) ∗ ( 𝑛 ↑ 𝑀 ) ) = ( ( 𝐾 ‘ 𝑛 ) ∗ ( 𝑛 ↑ 𝑀 ) ) ) |
25 |
24
|
mpteq2dva |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1 ‘ ( 𝐶 ‘ 𝑀 ) ) ‘ 𝑛 ) ∗ ( 𝑛 ↑ 𝑀 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐾 ‘ 𝑛 ) ∗ ( 𝑛 ↑ 𝑀 ) ) ) ) |
26 |
25
|
oveq2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 𝐴 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1 ‘ ( 𝐶 ‘ 𝑀 ) ) ‘ 𝑛 ) ∗ ( 𝑛 ↑ 𝑀 ) ) ) ) = ( 𝐴 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐾 ‘ 𝑛 ) ∗ ( 𝑛 ↑ 𝑀 ) ) ) ) ) |
27 |
26
|
eqeq1d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( ( 𝐴 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1 ‘ ( 𝐶 ‘ 𝑀 ) ) ‘ 𝑛 ) ∗ ( 𝑛 ↑ 𝑀 ) ) ) ) = ( 𝑈 ‘ ( 𝑌 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 𝐸 ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑛 ) ) ) ) ) ↔ ( 𝐴 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐾 ‘ 𝑛 ) ∗ ( 𝑛 ↑ 𝑀 ) ) ) ) = ( 𝑈 ‘ ( 𝑌 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 𝐸 ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑛 ) ) ) ) ) ) ) |
28 |
27
|
biimpa |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ ( 𝐴 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1 ‘ ( 𝐶 ‘ 𝑀 ) ) ‘ 𝑛 ) ∗ ( 𝑛 ↑ 𝑀 ) ) ) ) = ( 𝑈 ‘ ( 𝑌 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 𝐸 ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑛 ) ) ) ) ) ) → ( 𝐴 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐾 ‘ 𝑛 ) ∗ ( 𝑛 ↑ 𝑀 ) ) ) ) = ( 𝑈 ‘ ( 𝑌 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 𝐸 ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑛 ) ) ) ) ) ) |
29 |
|
oveq1 |
⊢ ( 𝑛 = 𝑙 → ( 𝑛 𝐸 ( 𝑇 ‘ 𝑀 ) ) = ( 𝑙 𝐸 ( 𝑇 ‘ 𝑀 ) ) ) |
30 |
|
fveq2 |
⊢ ( 𝑛 = 𝑙 → ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ 𝑙 ) ) |
31 |
29 30
|
oveq12d |
⊢ ( 𝑛 = 𝑙 → ( ( 𝑛 𝐸 ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑛 ) ) = ( ( 𝑙 𝐸 ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑙 ) ) ) |
32 |
31
|
cbvmptv |
⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 𝐸 ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑛 ) ) ) = ( 𝑙 ∈ ℕ0 ↦ ( ( 𝑙 𝐸 ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑙 ) ) ) |
33 |
32
|
oveq2i |
⊢ ( 𝑌 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 𝐸 ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑛 ) ) ) ) = ( 𝑌 Σg ( 𝑙 ∈ ℕ0 ↦ ( ( 𝑙 𝐸 ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑙 ) ) ) ) |
34 |
1 2 9 10 11 12 13 16 17 15
|
cayhamlem1 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 𝑌 Σg ( 𝑙 ∈ ℕ0 ↦ ( ( 𝑙 𝐸 ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑙 ) ) ) ) = 𝑍 ) |
35 |
33 34
|
syl5eq |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 𝑌 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 𝐸 ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑛 ) ) ) ) = 𝑍 ) |
36 |
|
fveq2 |
⊢ ( ( 𝑌 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 𝐸 ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑛 ) ) ) ) = 𝑍 → ( 𝑈 ‘ ( 𝑌 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 𝐸 ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑛 ) ) ) ) ) = ( 𝑈 ‘ 𝑍 ) ) |
37 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
38 |
37
|
anim2i |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ) |
39 |
38
|
3adant3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ) |
40 |
|
eqid |
⊢ ( 0g ‘ 𝐴 ) = ( 0g ‘ 𝐴 ) |
41 |
1 18 9 10 40 13
|
m2cpminv0 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑈 ‘ 𝑍 ) = ( 0g ‘ 𝐴 ) ) |
42 |
39 41
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝑈 ‘ 𝑍 ) = ( 0g ‘ 𝐴 ) ) |
43 |
42 3
|
eqtr4di |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝑈 ‘ 𝑍 ) = 0 ) |
44 |
43
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 𝑈 ‘ 𝑍 ) = 0 ) |
45 |
36 44
|
sylan9eqr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ ( 𝑌 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 𝐸 ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑛 ) ) ) ) = 𝑍 ) → ( 𝑈 ‘ ( 𝑌 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 𝐸 ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑛 ) ) ) ) ) = 0 ) |
46 |
35 45
|
mpdan |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 𝑈 ‘ ( 𝑌 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 𝐸 ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑛 ) ) ) ) ) = 0 ) |
47 |
46
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ ( 𝐴 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1 ‘ ( 𝐶 ‘ 𝑀 ) ) ‘ 𝑛 ) ∗ ( 𝑛 ↑ 𝑀 ) ) ) ) = ( 𝑈 ‘ ( 𝑌 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 𝐸 ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑛 ) ) ) ) ) ) → ( 𝑈 ‘ ( 𝑌 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 𝐸 ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑛 ) ) ) ) ) = 0 ) |
48 |
28 47
|
eqtrd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ ( 𝐴 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1 ‘ ( 𝐶 ‘ 𝑀 ) ) ‘ 𝑛 ) ∗ ( 𝑛 ↑ 𝑀 ) ) ) ) = ( 𝑈 ‘ ( 𝑌 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 𝐸 ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑛 ) ) ) ) ) ) → ( 𝐴 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐾 ‘ 𝑛 ) ∗ ( 𝑛 ↑ 𝑀 ) ) ) ) = 0 ) |
49 |
48
|
ex |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( ( 𝐴 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1 ‘ ( 𝐶 ‘ 𝑀 ) ) ‘ 𝑛 ) ∗ ( 𝑛 ↑ 𝑀 ) ) ) ) = ( 𝑈 ‘ ( 𝑌 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 𝐸 ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑛 ) ) ) ) ) → ( 𝐴 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐾 ‘ 𝑛 ) ∗ ( 𝑛 ↑ 𝑀 ) ) ) ) = 0 ) ) |
50 |
49
|
rexlimdvva |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( ∃ 𝑠 ∈ ℕ ∃ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ( 𝐴 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1 ‘ ( 𝐶 ‘ 𝑀 ) ) ‘ 𝑛 ) ∗ ( 𝑛 ↑ 𝑀 ) ) ) ) = ( 𝑈 ‘ ( 𝑌 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 𝐸 ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑛 ) ) ) ) ) → ( 𝐴 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐾 ‘ 𝑛 ) ∗ ( 𝑛 ↑ 𝑀 ) ) ) ) = 0 ) ) |
51 |
20 50
|
mpd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝐴 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐾 ‘ 𝑛 ) ∗ ( 𝑛 ↑ 𝑀 ) ) ) ) = 0 ) |