| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cayleyhamilton.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
| 2 |
|
cayleyhamilton.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
| 3 |
|
cayleyhamilton.0 |
⊢ 0 = ( 0g ‘ 𝐴 ) |
| 4 |
|
cayleyhamilton.c |
⊢ 𝐶 = ( 𝑁 CharPlyMat 𝑅 ) |
| 5 |
|
cayleyhamilton.k |
⊢ 𝐾 = ( coe1 ‘ ( 𝐶 ‘ 𝑀 ) ) |
| 6 |
|
cayleyhamilton.m |
⊢ ∗ = ( ·𝑠 ‘ 𝐴 ) |
| 7 |
|
cayleyhamilton.e |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝐴 ) ) |
| 8 |
|
cayleyhamilton1.l |
⊢ 𝐿 = ( Base ‘ 𝑅 ) |
| 9 |
|
cayleyhamilton1.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
| 10 |
|
cayleyhamilton1.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 11 |
|
cayleyhamilton1.m |
⊢ · = ( ·𝑠 ‘ 𝑃 ) |
| 12 |
|
cayleyhamilton1.e |
⊢ 𝐸 = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
| 13 |
|
cayleyhamilton1.z |
⊢ 𝑍 = ( 0g ‘ 𝑅 ) |
| 14 |
1 2 3 4 5 6 7
|
cayleyhamilton |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝐴 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐾 ‘ 𝑛 ) ∗ ( 𝑛 ↑ 𝑀 ) ) ) ) = 0 ) |
| 15 |
14
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝐿 ↑m ℕ0 ) ∧ 𝐹 finSupp 𝑍 ) ) → ( 𝐴 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐾 ‘ 𝑛 ) ∗ ( 𝑛 ↑ 𝑀 ) ) ) ) = 0 ) |
| 16 |
|
nfv |
⊢ Ⅎ 𝑛 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝐿 ↑m ℕ0 ) ∧ 𝐹 finSupp 𝑍 ) ) |
| 17 |
|
nfcv |
⊢ Ⅎ 𝑛 𝑃 |
| 18 |
|
nfcv |
⊢ Ⅎ 𝑛 Σg |
| 19 |
|
nfmpt1 |
⊢ Ⅎ 𝑛 ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑛 ) · ( 𝑛 𝐸 𝑋 ) ) ) |
| 20 |
17 18 19
|
nfov |
⊢ Ⅎ 𝑛 ( 𝑃 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑛 ) · ( 𝑛 𝐸 𝑋 ) ) ) ) |
| 21 |
20
|
nfeq2 |
⊢ Ⅎ 𝑛 ( 𝐶 ‘ 𝑀 ) = ( 𝑃 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑛 ) · ( 𝑛 𝐸 𝑋 ) ) ) ) |
| 22 |
16 21
|
nfan |
⊢ Ⅎ 𝑛 ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝐿 ↑m ℕ0 ) ∧ 𝐹 finSupp 𝑍 ) ) ∧ ( 𝐶 ‘ 𝑀 ) = ( 𝑃 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑛 ) · ( 𝑛 𝐸 𝑋 ) ) ) ) ) |
| 23 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
| 24 |
23
|
3ad2ant2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑅 ∈ Ring ) |
| 25 |
24
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝐿 ↑m ℕ0 ) ∧ 𝐹 finSupp 𝑍 ) ) → 𝑅 ∈ Ring ) |
| 26 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
| 27 |
4 1 2 10 26
|
chpmatply1 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝐶 ‘ 𝑀 ) ∈ ( Base ‘ 𝑃 ) ) |
| 28 |
27
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝐿 ↑m ℕ0 ) ∧ 𝐹 finSupp 𝑍 ) ) → ( 𝐶 ‘ 𝑀 ) ∈ ( Base ‘ 𝑃 ) ) |
| 29 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 30 |
|
elmapi |
⊢ ( 𝐹 ∈ ( 𝐿 ↑m ℕ0 ) → 𝐹 : ℕ0 ⟶ 𝐿 ) |
| 31 |
|
ffvelcdm |
⊢ ( ( 𝐹 : ℕ0 ⟶ 𝐿 ∧ 𝑛 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑛 ) ∈ 𝐿 ) |
| 32 |
31
|
ralrimiva |
⊢ ( 𝐹 : ℕ0 ⟶ 𝐿 → ∀ 𝑛 ∈ ℕ0 ( 𝐹 ‘ 𝑛 ) ∈ 𝐿 ) |
| 33 |
30 32
|
syl |
⊢ ( 𝐹 ∈ ( 𝐿 ↑m ℕ0 ) → ∀ 𝑛 ∈ ℕ0 ( 𝐹 ‘ 𝑛 ) ∈ 𝐿 ) |
| 34 |
33
|
ad2antrl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝐿 ↑m ℕ0 ) ∧ 𝐹 finSupp 𝑍 ) ) → ∀ 𝑛 ∈ ℕ0 ( 𝐹 ‘ 𝑛 ) ∈ 𝐿 ) |
| 35 |
30
|
feqmptd |
⊢ ( 𝐹 ∈ ( 𝐿 ↑m ℕ0 ) → 𝐹 = ( 𝑛 ∈ ℕ0 ↦ ( 𝐹 ‘ 𝑛 ) ) ) |
| 36 |
13
|
a1i |
⊢ ( 𝐹 ∈ ( 𝐿 ↑m ℕ0 ) → 𝑍 = ( 0g ‘ 𝑅 ) ) |
| 37 |
35 36
|
breq12d |
⊢ ( 𝐹 ∈ ( 𝐿 ↑m ℕ0 ) → ( 𝐹 finSupp 𝑍 ↔ ( 𝑛 ∈ ℕ0 ↦ ( 𝐹 ‘ 𝑛 ) ) finSupp ( 0g ‘ 𝑅 ) ) ) |
| 38 |
37
|
biimpa |
⊢ ( ( 𝐹 ∈ ( 𝐿 ↑m ℕ0 ) ∧ 𝐹 finSupp 𝑍 ) → ( 𝑛 ∈ ℕ0 ↦ ( 𝐹 ‘ 𝑛 ) ) finSupp ( 0g ‘ 𝑅 ) ) |
| 39 |
38
|
adantl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝐿 ↑m ℕ0 ) ∧ 𝐹 finSupp 𝑍 ) ) → ( 𝑛 ∈ ℕ0 ↦ ( 𝐹 ‘ 𝑛 ) ) finSupp ( 0g ‘ 𝑅 ) ) |
| 40 |
10 26 9 12 25 8 11 29 34 39
|
gsumsmonply1 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝐿 ↑m ℕ0 ) ∧ 𝐹 finSupp 𝑍 ) ) → ( 𝑃 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑛 ) · ( 𝑛 𝐸 𝑋 ) ) ) ) ∈ ( Base ‘ 𝑃 ) ) |
| 41 |
|
fveq2 |
⊢ ( 𝑖 = 𝑛 → ( 𝐹 ‘ 𝑖 ) = ( 𝐹 ‘ 𝑛 ) ) |
| 42 |
|
oveq1 |
⊢ ( 𝑖 = 𝑛 → ( 𝑖 𝐸 𝑋 ) = ( 𝑛 𝐸 𝑋 ) ) |
| 43 |
41 42
|
oveq12d |
⊢ ( 𝑖 = 𝑛 → ( ( 𝐹 ‘ 𝑖 ) · ( 𝑖 𝐸 𝑋 ) ) = ( ( 𝐹 ‘ 𝑛 ) · ( 𝑛 𝐸 𝑋 ) ) ) |
| 44 |
43
|
cbvmptv |
⊢ ( 𝑖 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑖 ) · ( 𝑖 𝐸 𝑋 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑛 ) · ( 𝑛 𝐸 𝑋 ) ) ) |
| 45 |
44
|
oveq2i |
⊢ ( 𝑃 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑖 ) · ( 𝑖 𝐸 𝑋 ) ) ) ) = ( 𝑃 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑛 ) · ( 𝑛 𝐸 𝑋 ) ) ) ) |
| 46 |
45
|
fveq2i |
⊢ ( coe1 ‘ ( 𝑃 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑖 ) · ( 𝑖 𝐸 𝑋 ) ) ) ) ) = ( coe1 ‘ ( 𝑃 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑛 ) · ( 𝑛 𝐸 𝑋 ) ) ) ) ) |
| 47 |
10 26 5 46
|
ply1coe1eq |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐶 ‘ 𝑀 ) ∈ ( Base ‘ 𝑃 ) ∧ ( 𝑃 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑛 ) · ( 𝑛 𝐸 𝑋 ) ) ) ) ∈ ( Base ‘ 𝑃 ) ) → ( ∀ 𝑚 ∈ ℕ0 ( 𝐾 ‘ 𝑚 ) = ( ( coe1 ‘ ( 𝑃 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑖 ) · ( 𝑖 𝐸 𝑋 ) ) ) ) ) ‘ 𝑚 ) ↔ ( 𝐶 ‘ 𝑀 ) = ( 𝑃 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑛 ) · ( 𝑛 𝐸 𝑋 ) ) ) ) ) ) |
| 48 |
25 28 40 47
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝐿 ↑m ℕ0 ) ∧ 𝐹 finSupp 𝑍 ) ) → ( ∀ 𝑚 ∈ ℕ0 ( 𝐾 ‘ 𝑚 ) = ( ( coe1 ‘ ( 𝑃 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑖 ) · ( 𝑖 𝐸 𝑋 ) ) ) ) ) ‘ 𝑚 ) ↔ ( 𝐶 ‘ 𝑀 ) = ( 𝑃 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑛 ) · ( 𝑛 𝐸 𝑋 ) ) ) ) ) ) |
| 49 |
|
fveq2 |
⊢ ( 𝑚 = 𝑛 → ( 𝐾 ‘ 𝑚 ) = ( 𝐾 ‘ 𝑛 ) ) |
| 50 |
|
fveq2 |
⊢ ( 𝑚 = 𝑛 → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑖 ) · ( 𝑖 𝐸 𝑋 ) ) ) ) ) ‘ 𝑚 ) = ( ( coe1 ‘ ( 𝑃 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑖 ) · ( 𝑖 𝐸 𝑋 ) ) ) ) ) ‘ 𝑛 ) ) |
| 51 |
49 50
|
eqeq12d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝐾 ‘ 𝑚 ) = ( ( coe1 ‘ ( 𝑃 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑖 ) · ( 𝑖 𝐸 𝑋 ) ) ) ) ) ‘ 𝑚 ) ↔ ( 𝐾 ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑃 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑖 ) · ( 𝑖 𝐸 𝑋 ) ) ) ) ) ‘ 𝑛 ) ) ) |
| 52 |
51
|
rspcva |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℕ0 ( 𝐾 ‘ 𝑚 ) = ( ( coe1 ‘ ( 𝑃 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑖 ) · ( 𝑖 𝐸 𝑋 ) ) ) ) ) ‘ 𝑚 ) ) → ( 𝐾 ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑃 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑖 ) · ( 𝑖 𝐸 𝑋 ) ) ) ) ) ‘ 𝑛 ) ) |
| 53 |
|
simpl |
⊢ ( ( ( 𝐾 ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑃 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑖 ) · ( 𝑖 𝐸 𝑋 ) ) ) ) ) ‘ 𝑛 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝐿 ↑m ℕ0 ) ∧ 𝐹 finSupp 𝑍 ) ) ) ) → ( 𝐾 ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑃 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑖 ) · ( 𝑖 𝐸 𝑋 ) ) ) ) ) ‘ 𝑛 ) ) |
| 54 |
24
|
ad2antrl |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝐿 ↑m ℕ0 ) ∧ 𝐹 finSupp 𝑍 ) ) ) → 𝑅 ∈ Ring ) |
| 55 |
|
ffvelcdm |
⊢ ( ( 𝐹 : ℕ0 ⟶ 𝐿 ∧ 𝑖 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑖 ) ∈ 𝐿 ) |
| 56 |
55
|
ralrimiva |
⊢ ( 𝐹 : ℕ0 ⟶ 𝐿 → ∀ 𝑖 ∈ ℕ0 ( 𝐹 ‘ 𝑖 ) ∈ 𝐿 ) |
| 57 |
30 56
|
syl |
⊢ ( 𝐹 ∈ ( 𝐿 ↑m ℕ0 ) → ∀ 𝑖 ∈ ℕ0 ( 𝐹 ‘ 𝑖 ) ∈ 𝐿 ) |
| 58 |
57
|
ad2antrl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝐿 ↑m ℕ0 ) ∧ 𝐹 finSupp 𝑍 ) ) → ∀ 𝑖 ∈ ℕ0 ( 𝐹 ‘ 𝑖 ) ∈ 𝐿 ) |
| 59 |
58
|
adantl |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝐿 ↑m ℕ0 ) ∧ 𝐹 finSupp 𝑍 ) ) ) → ∀ 𝑖 ∈ ℕ0 ( 𝐹 ‘ 𝑖 ) ∈ 𝐿 ) |
| 60 |
30
|
feqmptd |
⊢ ( 𝐹 ∈ ( 𝐿 ↑m ℕ0 ) → 𝐹 = ( 𝑖 ∈ ℕ0 ↦ ( 𝐹 ‘ 𝑖 ) ) ) |
| 61 |
60
|
breq1d |
⊢ ( 𝐹 ∈ ( 𝐿 ↑m ℕ0 ) → ( 𝐹 finSupp 𝑍 ↔ ( 𝑖 ∈ ℕ0 ↦ ( 𝐹 ‘ 𝑖 ) ) finSupp 𝑍 ) ) |
| 62 |
61
|
biimpa |
⊢ ( ( 𝐹 ∈ ( 𝐿 ↑m ℕ0 ) ∧ 𝐹 finSupp 𝑍 ) → ( 𝑖 ∈ ℕ0 ↦ ( 𝐹 ‘ 𝑖 ) ) finSupp 𝑍 ) |
| 63 |
62
|
adantl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝐿 ↑m ℕ0 ) ∧ 𝐹 finSupp 𝑍 ) ) → ( 𝑖 ∈ ℕ0 ↦ ( 𝐹 ‘ 𝑖 ) ) finSupp 𝑍 ) |
| 64 |
63
|
adantl |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝐿 ↑m ℕ0 ) ∧ 𝐹 finSupp 𝑍 ) ) ) → ( 𝑖 ∈ ℕ0 ↦ ( 𝐹 ‘ 𝑖 ) ) finSupp 𝑍 ) |
| 65 |
|
simpl |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝐿 ↑m ℕ0 ) ∧ 𝐹 finSupp 𝑍 ) ) ) → 𝑛 ∈ ℕ0 ) |
| 66 |
10 26 9 12 54 8 11 13 59 64 65
|
gsummoncoe1 |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝐿 ↑m ℕ0 ) ∧ 𝐹 finSupp 𝑍 ) ) ) → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑖 ) · ( 𝑖 𝐸 𝑋 ) ) ) ) ) ‘ 𝑛 ) = ⦋ 𝑛 / 𝑖 ⦌ ( 𝐹 ‘ 𝑖 ) ) |
| 67 |
|
csbfv |
⊢ ⦋ 𝑛 / 𝑖 ⦌ ( 𝐹 ‘ 𝑖 ) = ( 𝐹 ‘ 𝑛 ) |
| 68 |
66 67
|
eqtrdi |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝐿 ↑m ℕ0 ) ∧ 𝐹 finSupp 𝑍 ) ) ) → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑖 ) · ( 𝑖 𝐸 𝑋 ) ) ) ) ) ‘ 𝑛 ) = ( 𝐹 ‘ 𝑛 ) ) |
| 69 |
68
|
adantl |
⊢ ( ( ( 𝐾 ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑃 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑖 ) · ( 𝑖 𝐸 𝑋 ) ) ) ) ) ‘ 𝑛 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝐿 ↑m ℕ0 ) ∧ 𝐹 finSupp 𝑍 ) ) ) ) → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑖 ) · ( 𝑖 𝐸 𝑋 ) ) ) ) ) ‘ 𝑛 ) = ( 𝐹 ‘ 𝑛 ) ) |
| 70 |
53 69
|
eqtrd |
⊢ ( ( ( 𝐾 ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑃 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑖 ) · ( 𝑖 𝐸 𝑋 ) ) ) ) ) ‘ 𝑛 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝐿 ↑m ℕ0 ) ∧ 𝐹 finSupp 𝑍 ) ) ) ) → ( 𝐾 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑛 ) ) |
| 71 |
70
|
exp32 |
⊢ ( ( 𝐾 ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑃 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑖 ) · ( 𝑖 𝐸 𝑋 ) ) ) ) ) ‘ 𝑛 ) → ( 𝑛 ∈ ℕ0 → ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝐿 ↑m ℕ0 ) ∧ 𝐹 finSupp 𝑍 ) ) → ( 𝐾 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 72 |
71
|
com12 |
⊢ ( 𝑛 ∈ ℕ0 → ( ( 𝐾 ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑃 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑖 ) · ( 𝑖 𝐸 𝑋 ) ) ) ) ) ‘ 𝑛 ) → ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝐿 ↑m ℕ0 ) ∧ 𝐹 finSupp 𝑍 ) ) → ( 𝐾 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 73 |
72
|
adantr |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℕ0 ( 𝐾 ‘ 𝑚 ) = ( ( coe1 ‘ ( 𝑃 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑖 ) · ( 𝑖 𝐸 𝑋 ) ) ) ) ) ‘ 𝑚 ) ) → ( ( 𝐾 ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑃 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑖 ) · ( 𝑖 𝐸 𝑋 ) ) ) ) ) ‘ 𝑛 ) → ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝐿 ↑m ℕ0 ) ∧ 𝐹 finSupp 𝑍 ) ) → ( 𝐾 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 74 |
52 73
|
mpd |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℕ0 ( 𝐾 ‘ 𝑚 ) = ( ( coe1 ‘ ( 𝑃 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑖 ) · ( 𝑖 𝐸 𝑋 ) ) ) ) ) ‘ 𝑚 ) ) → ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝐿 ↑m ℕ0 ) ∧ 𝐹 finSupp 𝑍 ) ) → ( 𝐾 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑛 ) ) ) |
| 75 |
74
|
com12 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝐿 ↑m ℕ0 ) ∧ 𝐹 finSupp 𝑍 ) ) → ( ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℕ0 ( 𝐾 ‘ 𝑚 ) = ( ( coe1 ‘ ( 𝑃 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑖 ) · ( 𝑖 𝐸 𝑋 ) ) ) ) ) ‘ 𝑚 ) ) → ( 𝐾 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑛 ) ) ) |
| 76 |
75
|
expcomd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝐿 ↑m ℕ0 ) ∧ 𝐹 finSupp 𝑍 ) ) → ( ∀ 𝑚 ∈ ℕ0 ( 𝐾 ‘ 𝑚 ) = ( ( coe1 ‘ ( 𝑃 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑖 ) · ( 𝑖 𝐸 𝑋 ) ) ) ) ) ‘ 𝑚 ) → ( 𝑛 ∈ ℕ0 → ( 𝐾 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 77 |
48 76
|
sylbird |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝐿 ↑m ℕ0 ) ∧ 𝐹 finSupp 𝑍 ) ) → ( ( 𝐶 ‘ 𝑀 ) = ( 𝑃 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑛 ) · ( 𝑛 𝐸 𝑋 ) ) ) ) → ( 𝑛 ∈ ℕ0 → ( 𝐾 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 78 |
77
|
imp31 |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝐿 ↑m ℕ0 ) ∧ 𝐹 finSupp 𝑍 ) ) ∧ ( 𝐶 ‘ 𝑀 ) = ( 𝑃 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑛 ) · ( 𝑛 𝐸 𝑋 ) ) ) ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝐾 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑛 ) ) |
| 79 |
78
|
oveq1d |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝐿 ↑m ℕ0 ) ∧ 𝐹 finSupp 𝑍 ) ) ∧ ( 𝐶 ‘ 𝑀 ) = ( 𝑃 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑛 ) · ( 𝑛 𝐸 𝑋 ) ) ) ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝐾 ‘ 𝑛 ) ∗ ( 𝑛 ↑ 𝑀 ) ) = ( ( 𝐹 ‘ 𝑛 ) ∗ ( 𝑛 ↑ 𝑀 ) ) ) |
| 80 |
22 79
|
mpteq2da |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝐿 ↑m ℕ0 ) ∧ 𝐹 finSupp 𝑍 ) ) ∧ ( 𝐶 ‘ 𝑀 ) = ( 𝑃 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑛 ) · ( 𝑛 𝐸 𝑋 ) ) ) ) ) → ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐾 ‘ 𝑛 ) ∗ ( 𝑛 ↑ 𝑀 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑛 ) ∗ ( 𝑛 ↑ 𝑀 ) ) ) ) |
| 81 |
80
|
oveq2d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝐿 ↑m ℕ0 ) ∧ 𝐹 finSupp 𝑍 ) ) ∧ ( 𝐶 ‘ 𝑀 ) = ( 𝑃 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑛 ) · ( 𝑛 𝐸 𝑋 ) ) ) ) ) → ( 𝐴 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐾 ‘ 𝑛 ) ∗ ( 𝑛 ↑ 𝑀 ) ) ) ) = ( 𝐴 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑛 ) ∗ ( 𝑛 ↑ 𝑀 ) ) ) ) ) |
| 82 |
81
|
eqeq1d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝐿 ↑m ℕ0 ) ∧ 𝐹 finSupp 𝑍 ) ) ∧ ( 𝐶 ‘ 𝑀 ) = ( 𝑃 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑛 ) · ( 𝑛 𝐸 𝑋 ) ) ) ) ) → ( ( 𝐴 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐾 ‘ 𝑛 ) ∗ ( 𝑛 ↑ 𝑀 ) ) ) ) = 0 ↔ ( 𝐴 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑛 ) ∗ ( 𝑛 ↑ 𝑀 ) ) ) ) = 0 ) ) |
| 83 |
82
|
biimpd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝐿 ↑m ℕ0 ) ∧ 𝐹 finSupp 𝑍 ) ) ∧ ( 𝐶 ‘ 𝑀 ) = ( 𝑃 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑛 ) · ( 𝑛 𝐸 𝑋 ) ) ) ) ) → ( ( 𝐴 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐾 ‘ 𝑛 ) ∗ ( 𝑛 ↑ 𝑀 ) ) ) ) = 0 → ( 𝐴 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑛 ) ∗ ( 𝑛 ↑ 𝑀 ) ) ) ) = 0 ) ) |
| 84 |
83
|
ex |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝐿 ↑m ℕ0 ) ∧ 𝐹 finSupp 𝑍 ) ) → ( ( 𝐶 ‘ 𝑀 ) = ( 𝑃 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑛 ) · ( 𝑛 𝐸 𝑋 ) ) ) ) → ( ( 𝐴 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐾 ‘ 𝑛 ) ∗ ( 𝑛 ↑ 𝑀 ) ) ) ) = 0 → ( 𝐴 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑛 ) ∗ ( 𝑛 ↑ 𝑀 ) ) ) ) = 0 ) ) ) |
| 85 |
15 84
|
mpid |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐹 ∈ ( 𝐿 ↑m ℕ0 ) ∧ 𝐹 finSupp 𝑍 ) ) → ( ( 𝐶 ‘ 𝑀 ) = ( 𝑃 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑛 ) · ( 𝑛 𝐸 𝑋 ) ) ) ) → ( 𝐴 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑛 ) ∗ ( 𝑛 ↑ 𝑀 ) ) ) ) = 0 ) ) |