Metamath Proof Explorer


Theorem cayleyhamilton1

Description: The Cayley-Hamilton theorem: A matrix over a commutative ring "satisfies its own characteristic equation", or, in other words, a matrix over a commutative ring "inserted" into its characteristic polynomial results in zero. In this variant of cayleyhamilton , the meaning of "inserted" is made more transparent: If the characteristic polynomial is a polynomial with coefficients ( Fn ) , then a matrix over a commutative ring "inserted" into its characteristic polynomial is the sum of these coefficients multiplied with the corresponding power of the matrix. (Contributed by AV, 25-Nov-2019)

Ref Expression
Hypotheses cayleyhamilton.a 𝐴 = ( 𝑁 Mat 𝑅 )
cayleyhamilton.b 𝐵 = ( Base ‘ 𝐴 )
cayleyhamilton.0 0 = ( 0g𝐴 )
cayleyhamilton.c 𝐶 = ( 𝑁 CharPlyMat 𝑅 )
cayleyhamilton.k 𝐾 = ( coe1 ‘ ( 𝐶𝑀 ) )
cayleyhamilton.m = ( ·𝑠𝐴 )
cayleyhamilton.e = ( .g ‘ ( mulGrp ‘ 𝐴 ) )
cayleyhamilton1.l 𝐿 = ( Base ‘ 𝑅 )
cayleyhamilton1.x 𝑋 = ( var1𝑅 )
cayleyhamilton1.p 𝑃 = ( Poly1𝑅 )
cayleyhamilton1.m · = ( ·𝑠𝑃 )
cayleyhamilton1.e 𝐸 = ( .g ‘ ( mulGrp ‘ 𝑃 ) )
cayleyhamilton1.z 𝑍 = ( 0g𝑅 )
Assertion cayleyhamilton1 ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝐹 ∈ ( 𝐿m0 ) ∧ 𝐹 finSupp 𝑍 ) ) → ( ( 𝐶𝑀 ) = ( 𝑃 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐹𝑛 ) · ( 𝑛 𝐸 𝑋 ) ) ) ) → ( 𝐴 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐹𝑛 ) ( 𝑛 𝑀 ) ) ) ) = 0 ) )

Proof

Step Hyp Ref Expression
1 cayleyhamilton.a 𝐴 = ( 𝑁 Mat 𝑅 )
2 cayleyhamilton.b 𝐵 = ( Base ‘ 𝐴 )
3 cayleyhamilton.0 0 = ( 0g𝐴 )
4 cayleyhamilton.c 𝐶 = ( 𝑁 CharPlyMat 𝑅 )
5 cayleyhamilton.k 𝐾 = ( coe1 ‘ ( 𝐶𝑀 ) )
6 cayleyhamilton.m = ( ·𝑠𝐴 )
7 cayleyhamilton.e = ( .g ‘ ( mulGrp ‘ 𝐴 ) )
8 cayleyhamilton1.l 𝐿 = ( Base ‘ 𝑅 )
9 cayleyhamilton1.x 𝑋 = ( var1𝑅 )
10 cayleyhamilton1.p 𝑃 = ( Poly1𝑅 )
11 cayleyhamilton1.m · = ( ·𝑠𝑃 )
12 cayleyhamilton1.e 𝐸 = ( .g ‘ ( mulGrp ‘ 𝑃 ) )
13 cayleyhamilton1.z 𝑍 = ( 0g𝑅 )
14 1 2 3 4 5 6 7 cayleyhamilton ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ( 𝐴 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐾𝑛 ) ( 𝑛 𝑀 ) ) ) ) = 0 )
15 14 adantr ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝐹 ∈ ( 𝐿m0 ) ∧ 𝐹 finSupp 𝑍 ) ) → ( 𝐴 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐾𝑛 ) ( 𝑛 𝑀 ) ) ) ) = 0 )
16 nfv 𝑛 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝐹 ∈ ( 𝐿m0 ) ∧ 𝐹 finSupp 𝑍 ) )
17 nfcv 𝑛 𝑃
18 nfcv 𝑛 Σg
19 nfmpt1 𝑛 ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐹𝑛 ) · ( 𝑛 𝐸 𝑋 ) ) )
20 17 18 19 nfov 𝑛 ( 𝑃 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐹𝑛 ) · ( 𝑛 𝐸 𝑋 ) ) ) )
21 20 nfeq2 𝑛 ( 𝐶𝑀 ) = ( 𝑃 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐹𝑛 ) · ( 𝑛 𝐸 𝑋 ) ) ) )
22 16 21 nfan 𝑛 ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝐹 ∈ ( 𝐿m0 ) ∧ 𝐹 finSupp 𝑍 ) ) ∧ ( 𝐶𝑀 ) = ( 𝑃 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐹𝑛 ) · ( 𝑛 𝐸 𝑋 ) ) ) ) )
23 crngring ( 𝑅 ∈ CRing → 𝑅 ∈ Ring )
24 23 3ad2ant2 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → 𝑅 ∈ Ring )
25 24 adantr ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝐹 ∈ ( 𝐿m0 ) ∧ 𝐹 finSupp 𝑍 ) ) → 𝑅 ∈ Ring )
26 eqid ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 )
27 4 1 2 10 26 chpmatply1 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ( 𝐶𝑀 ) ∈ ( Base ‘ 𝑃 ) )
28 27 adantr ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝐹 ∈ ( 𝐿m0 ) ∧ 𝐹 finSupp 𝑍 ) ) → ( 𝐶𝑀 ) ∈ ( Base ‘ 𝑃 ) )
29 eqid ( 0g𝑅 ) = ( 0g𝑅 )
30 elmapi ( 𝐹 ∈ ( 𝐿m0 ) → 𝐹 : ℕ0𝐿 )
31 ffvelrn ( ( 𝐹 : ℕ0𝐿𝑛 ∈ ℕ0 ) → ( 𝐹𝑛 ) ∈ 𝐿 )
32 31 ralrimiva ( 𝐹 : ℕ0𝐿 → ∀ 𝑛 ∈ ℕ0 ( 𝐹𝑛 ) ∈ 𝐿 )
33 30 32 syl ( 𝐹 ∈ ( 𝐿m0 ) → ∀ 𝑛 ∈ ℕ0 ( 𝐹𝑛 ) ∈ 𝐿 )
34 33 ad2antrl ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝐹 ∈ ( 𝐿m0 ) ∧ 𝐹 finSupp 𝑍 ) ) → ∀ 𝑛 ∈ ℕ0 ( 𝐹𝑛 ) ∈ 𝐿 )
35 30 feqmptd ( 𝐹 ∈ ( 𝐿m0 ) → 𝐹 = ( 𝑛 ∈ ℕ0 ↦ ( 𝐹𝑛 ) ) )
36 13 a1i ( 𝐹 ∈ ( 𝐿m0 ) → 𝑍 = ( 0g𝑅 ) )
37 35 36 breq12d ( 𝐹 ∈ ( 𝐿m0 ) → ( 𝐹 finSupp 𝑍 ↔ ( 𝑛 ∈ ℕ0 ↦ ( 𝐹𝑛 ) ) finSupp ( 0g𝑅 ) ) )
38 37 biimpa ( ( 𝐹 ∈ ( 𝐿m0 ) ∧ 𝐹 finSupp 𝑍 ) → ( 𝑛 ∈ ℕ0 ↦ ( 𝐹𝑛 ) ) finSupp ( 0g𝑅 ) )
39 38 adantl ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝐹 ∈ ( 𝐿m0 ) ∧ 𝐹 finSupp 𝑍 ) ) → ( 𝑛 ∈ ℕ0 ↦ ( 𝐹𝑛 ) ) finSupp ( 0g𝑅 ) )
40 10 26 9 12 25 8 11 29 34 39 gsumsmonply1 ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝐹 ∈ ( 𝐿m0 ) ∧ 𝐹 finSupp 𝑍 ) ) → ( 𝑃 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐹𝑛 ) · ( 𝑛 𝐸 𝑋 ) ) ) ) ∈ ( Base ‘ 𝑃 ) )
41 fveq2 ( 𝑖 = 𝑛 → ( 𝐹𝑖 ) = ( 𝐹𝑛 ) )
42 oveq1 ( 𝑖 = 𝑛 → ( 𝑖 𝐸 𝑋 ) = ( 𝑛 𝐸 𝑋 ) )
43 41 42 oveq12d ( 𝑖 = 𝑛 → ( ( 𝐹𝑖 ) · ( 𝑖 𝐸 𝑋 ) ) = ( ( 𝐹𝑛 ) · ( 𝑛 𝐸 𝑋 ) ) )
44 43 cbvmptv ( 𝑖 ∈ ℕ0 ↦ ( ( 𝐹𝑖 ) · ( 𝑖 𝐸 𝑋 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐹𝑛 ) · ( 𝑛 𝐸 𝑋 ) ) )
45 44 oveq2i ( 𝑃 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝐹𝑖 ) · ( 𝑖 𝐸 𝑋 ) ) ) ) = ( 𝑃 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐹𝑛 ) · ( 𝑛 𝐸 𝑋 ) ) ) )
46 45 fveq2i ( coe1 ‘ ( 𝑃 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝐹𝑖 ) · ( 𝑖 𝐸 𝑋 ) ) ) ) ) = ( coe1 ‘ ( 𝑃 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐹𝑛 ) · ( 𝑛 𝐸 𝑋 ) ) ) ) )
47 10 26 5 46 ply1coe1eq ( ( 𝑅 ∈ Ring ∧ ( 𝐶𝑀 ) ∈ ( Base ‘ 𝑃 ) ∧ ( 𝑃 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐹𝑛 ) · ( 𝑛 𝐸 𝑋 ) ) ) ) ∈ ( Base ‘ 𝑃 ) ) → ( ∀ 𝑚 ∈ ℕ0 ( 𝐾𝑚 ) = ( ( coe1 ‘ ( 𝑃 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝐹𝑖 ) · ( 𝑖 𝐸 𝑋 ) ) ) ) ) ‘ 𝑚 ) ↔ ( 𝐶𝑀 ) = ( 𝑃 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐹𝑛 ) · ( 𝑛 𝐸 𝑋 ) ) ) ) ) )
48 25 28 40 47 syl3anc ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝐹 ∈ ( 𝐿m0 ) ∧ 𝐹 finSupp 𝑍 ) ) → ( ∀ 𝑚 ∈ ℕ0 ( 𝐾𝑚 ) = ( ( coe1 ‘ ( 𝑃 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝐹𝑖 ) · ( 𝑖 𝐸 𝑋 ) ) ) ) ) ‘ 𝑚 ) ↔ ( 𝐶𝑀 ) = ( 𝑃 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐹𝑛 ) · ( 𝑛 𝐸 𝑋 ) ) ) ) ) )
49 fveq2 ( 𝑚 = 𝑛 → ( 𝐾𝑚 ) = ( 𝐾𝑛 ) )
50 fveq2 ( 𝑚 = 𝑛 → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝐹𝑖 ) · ( 𝑖 𝐸 𝑋 ) ) ) ) ) ‘ 𝑚 ) = ( ( coe1 ‘ ( 𝑃 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝐹𝑖 ) · ( 𝑖 𝐸 𝑋 ) ) ) ) ) ‘ 𝑛 ) )
51 49 50 eqeq12d ( 𝑚 = 𝑛 → ( ( 𝐾𝑚 ) = ( ( coe1 ‘ ( 𝑃 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝐹𝑖 ) · ( 𝑖 𝐸 𝑋 ) ) ) ) ) ‘ 𝑚 ) ↔ ( 𝐾𝑛 ) = ( ( coe1 ‘ ( 𝑃 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝐹𝑖 ) · ( 𝑖 𝐸 𝑋 ) ) ) ) ) ‘ 𝑛 ) ) )
52 51 rspcva ( ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℕ0 ( 𝐾𝑚 ) = ( ( coe1 ‘ ( 𝑃 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝐹𝑖 ) · ( 𝑖 𝐸 𝑋 ) ) ) ) ) ‘ 𝑚 ) ) → ( 𝐾𝑛 ) = ( ( coe1 ‘ ( 𝑃 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝐹𝑖 ) · ( 𝑖 𝐸 𝑋 ) ) ) ) ) ‘ 𝑛 ) )
53 simpl ( ( ( 𝐾𝑛 ) = ( ( coe1 ‘ ( 𝑃 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝐹𝑖 ) · ( 𝑖 𝐸 𝑋 ) ) ) ) ) ‘ 𝑛 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝐹 ∈ ( 𝐿m0 ) ∧ 𝐹 finSupp 𝑍 ) ) ) ) → ( 𝐾𝑛 ) = ( ( coe1 ‘ ( 𝑃 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝐹𝑖 ) · ( 𝑖 𝐸 𝑋 ) ) ) ) ) ‘ 𝑛 ) )
54 24 ad2antrl ( ( 𝑛 ∈ ℕ0 ∧ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝐹 ∈ ( 𝐿m0 ) ∧ 𝐹 finSupp 𝑍 ) ) ) → 𝑅 ∈ Ring )
55 ffvelrn ( ( 𝐹 : ℕ0𝐿𝑖 ∈ ℕ0 ) → ( 𝐹𝑖 ) ∈ 𝐿 )
56 55 ralrimiva ( 𝐹 : ℕ0𝐿 → ∀ 𝑖 ∈ ℕ0 ( 𝐹𝑖 ) ∈ 𝐿 )
57 30 56 syl ( 𝐹 ∈ ( 𝐿m0 ) → ∀ 𝑖 ∈ ℕ0 ( 𝐹𝑖 ) ∈ 𝐿 )
58 57 ad2antrl ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝐹 ∈ ( 𝐿m0 ) ∧ 𝐹 finSupp 𝑍 ) ) → ∀ 𝑖 ∈ ℕ0 ( 𝐹𝑖 ) ∈ 𝐿 )
59 58 adantl ( ( 𝑛 ∈ ℕ0 ∧ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝐹 ∈ ( 𝐿m0 ) ∧ 𝐹 finSupp 𝑍 ) ) ) → ∀ 𝑖 ∈ ℕ0 ( 𝐹𝑖 ) ∈ 𝐿 )
60 30 feqmptd ( 𝐹 ∈ ( 𝐿m0 ) → 𝐹 = ( 𝑖 ∈ ℕ0 ↦ ( 𝐹𝑖 ) ) )
61 60 breq1d ( 𝐹 ∈ ( 𝐿m0 ) → ( 𝐹 finSupp 𝑍 ↔ ( 𝑖 ∈ ℕ0 ↦ ( 𝐹𝑖 ) ) finSupp 𝑍 ) )
62 61 biimpa ( ( 𝐹 ∈ ( 𝐿m0 ) ∧ 𝐹 finSupp 𝑍 ) → ( 𝑖 ∈ ℕ0 ↦ ( 𝐹𝑖 ) ) finSupp 𝑍 )
63 62 adantl ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝐹 ∈ ( 𝐿m0 ) ∧ 𝐹 finSupp 𝑍 ) ) → ( 𝑖 ∈ ℕ0 ↦ ( 𝐹𝑖 ) ) finSupp 𝑍 )
64 63 adantl ( ( 𝑛 ∈ ℕ0 ∧ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝐹 ∈ ( 𝐿m0 ) ∧ 𝐹 finSupp 𝑍 ) ) ) → ( 𝑖 ∈ ℕ0 ↦ ( 𝐹𝑖 ) ) finSupp 𝑍 )
65 simpl ( ( 𝑛 ∈ ℕ0 ∧ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝐹 ∈ ( 𝐿m0 ) ∧ 𝐹 finSupp 𝑍 ) ) ) → 𝑛 ∈ ℕ0 )
66 10 26 9 12 54 8 11 13 59 64 65 gsummoncoe1 ( ( 𝑛 ∈ ℕ0 ∧ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝐹 ∈ ( 𝐿m0 ) ∧ 𝐹 finSupp 𝑍 ) ) ) → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝐹𝑖 ) · ( 𝑖 𝐸 𝑋 ) ) ) ) ) ‘ 𝑛 ) = 𝑛 / 𝑖 ( 𝐹𝑖 ) )
67 csbfv 𝑛 / 𝑖 ( 𝐹𝑖 ) = ( 𝐹𝑛 )
68 66 67 eqtrdi ( ( 𝑛 ∈ ℕ0 ∧ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝐹 ∈ ( 𝐿m0 ) ∧ 𝐹 finSupp 𝑍 ) ) ) → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝐹𝑖 ) · ( 𝑖 𝐸 𝑋 ) ) ) ) ) ‘ 𝑛 ) = ( 𝐹𝑛 ) )
69 68 adantl ( ( ( 𝐾𝑛 ) = ( ( coe1 ‘ ( 𝑃 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝐹𝑖 ) · ( 𝑖 𝐸 𝑋 ) ) ) ) ) ‘ 𝑛 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝐹 ∈ ( 𝐿m0 ) ∧ 𝐹 finSupp 𝑍 ) ) ) ) → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝐹𝑖 ) · ( 𝑖 𝐸 𝑋 ) ) ) ) ) ‘ 𝑛 ) = ( 𝐹𝑛 ) )
70 53 69 eqtrd ( ( ( 𝐾𝑛 ) = ( ( coe1 ‘ ( 𝑃 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝐹𝑖 ) · ( 𝑖 𝐸 𝑋 ) ) ) ) ) ‘ 𝑛 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝐹 ∈ ( 𝐿m0 ) ∧ 𝐹 finSupp 𝑍 ) ) ) ) → ( 𝐾𝑛 ) = ( 𝐹𝑛 ) )
71 70 exp32 ( ( 𝐾𝑛 ) = ( ( coe1 ‘ ( 𝑃 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝐹𝑖 ) · ( 𝑖 𝐸 𝑋 ) ) ) ) ) ‘ 𝑛 ) → ( 𝑛 ∈ ℕ0 → ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝐹 ∈ ( 𝐿m0 ) ∧ 𝐹 finSupp 𝑍 ) ) → ( 𝐾𝑛 ) = ( 𝐹𝑛 ) ) ) )
72 71 com12 ( 𝑛 ∈ ℕ0 → ( ( 𝐾𝑛 ) = ( ( coe1 ‘ ( 𝑃 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝐹𝑖 ) · ( 𝑖 𝐸 𝑋 ) ) ) ) ) ‘ 𝑛 ) → ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝐹 ∈ ( 𝐿m0 ) ∧ 𝐹 finSupp 𝑍 ) ) → ( 𝐾𝑛 ) = ( 𝐹𝑛 ) ) ) )
73 72 adantr ( ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℕ0 ( 𝐾𝑚 ) = ( ( coe1 ‘ ( 𝑃 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝐹𝑖 ) · ( 𝑖 𝐸 𝑋 ) ) ) ) ) ‘ 𝑚 ) ) → ( ( 𝐾𝑛 ) = ( ( coe1 ‘ ( 𝑃 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝐹𝑖 ) · ( 𝑖 𝐸 𝑋 ) ) ) ) ) ‘ 𝑛 ) → ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝐹 ∈ ( 𝐿m0 ) ∧ 𝐹 finSupp 𝑍 ) ) → ( 𝐾𝑛 ) = ( 𝐹𝑛 ) ) ) )
74 52 73 mpd ( ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℕ0 ( 𝐾𝑚 ) = ( ( coe1 ‘ ( 𝑃 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝐹𝑖 ) · ( 𝑖 𝐸 𝑋 ) ) ) ) ) ‘ 𝑚 ) ) → ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝐹 ∈ ( 𝐿m0 ) ∧ 𝐹 finSupp 𝑍 ) ) → ( 𝐾𝑛 ) = ( 𝐹𝑛 ) ) )
75 74 com12 ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝐹 ∈ ( 𝐿m0 ) ∧ 𝐹 finSupp 𝑍 ) ) → ( ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℕ0 ( 𝐾𝑚 ) = ( ( coe1 ‘ ( 𝑃 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝐹𝑖 ) · ( 𝑖 𝐸 𝑋 ) ) ) ) ) ‘ 𝑚 ) ) → ( 𝐾𝑛 ) = ( 𝐹𝑛 ) ) )
76 75 expcomd ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝐹 ∈ ( 𝐿m0 ) ∧ 𝐹 finSupp 𝑍 ) ) → ( ∀ 𝑚 ∈ ℕ0 ( 𝐾𝑚 ) = ( ( coe1 ‘ ( 𝑃 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝐹𝑖 ) · ( 𝑖 𝐸 𝑋 ) ) ) ) ) ‘ 𝑚 ) → ( 𝑛 ∈ ℕ0 → ( 𝐾𝑛 ) = ( 𝐹𝑛 ) ) ) )
77 48 76 sylbird ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝐹 ∈ ( 𝐿m0 ) ∧ 𝐹 finSupp 𝑍 ) ) → ( ( 𝐶𝑀 ) = ( 𝑃 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐹𝑛 ) · ( 𝑛 𝐸 𝑋 ) ) ) ) → ( 𝑛 ∈ ℕ0 → ( 𝐾𝑛 ) = ( 𝐹𝑛 ) ) ) )
78 77 imp31 ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝐹 ∈ ( 𝐿m0 ) ∧ 𝐹 finSupp 𝑍 ) ) ∧ ( 𝐶𝑀 ) = ( 𝑃 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐹𝑛 ) · ( 𝑛 𝐸 𝑋 ) ) ) ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝐾𝑛 ) = ( 𝐹𝑛 ) )
79 78 oveq1d ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝐹 ∈ ( 𝐿m0 ) ∧ 𝐹 finSupp 𝑍 ) ) ∧ ( 𝐶𝑀 ) = ( 𝑃 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐹𝑛 ) · ( 𝑛 𝐸 𝑋 ) ) ) ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝐾𝑛 ) ( 𝑛 𝑀 ) ) = ( ( 𝐹𝑛 ) ( 𝑛 𝑀 ) ) )
80 22 79 mpteq2da ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝐹 ∈ ( 𝐿m0 ) ∧ 𝐹 finSupp 𝑍 ) ) ∧ ( 𝐶𝑀 ) = ( 𝑃 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐹𝑛 ) · ( 𝑛 𝐸 𝑋 ) ) ) ) ) → ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐾𝑛 ) ( 𝑛 𝑀 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐹𝑛 ) ( 𝑛 𝑀 ) ) ) )
81 80 oveq2d ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝐹 ∈ ( 𝐿m0 ) ∧ 𝐹 finSupp 𝑍 ) ) ∧ ( 𝐶𝑀 ) = ( 𝑃 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐹𝑛 ) · ( 𝑛 𝐸 𝑋 ) ) ) ) ) → ( 𝐴 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐾𝑛 ) ( 𝑛 𝑀 ) ) ) ) = ( 𝐴 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐹𝑛 ) ( 𝑛 𝑀 ) ) ) ) )
82 81 eqeq1d ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝐹 ∈ ( 𝐿m0 ) ∧ 𝐹 finSupp 𝑍 ) ) ∧ ( 𝐶𝑀 ) = ( 𝑃 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐹𝑛 ) · ( 𝑛 𝐸 𝑋 ) ) ) ) ) → ( ( 𝐴 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐾𝑛 ) ( 𝑛 𝑀 ) ) ) ) = 0 ↔ ( 𝐴 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐹𝑛 ) ( 𝑛 𝑀 ) ) ) ) = 0 ) )
83 82 biimpd ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝐹 ∈ ( 𝐿m0 ) ∧ 𝐹 finSupp 𝑍 ) ) ∧ ( 𝐶𝑀 ) = ( 𝑃 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐹𝑛 ) · ( 𝑛 𝐸 𝑋 ) ) ) ) ) → ( ( 𝐴 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐾𝑛 ) ( 𝑛 𝑀 ) ) ) ) = 0 → ( 𝐴 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐹𝑛 ) ( 𝑛 𝑀 ) ) ) ) = 0 ) )
84 83 ex ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝐹 ∈ ( 𝐿m0 ) ∧ 𝐹 finSupp 𝑍 ) ) → ( ( 𝐶𝑀 ) = ( 𝑃 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐹𝑛 ) · ( 𝑛 𝐸 𝑋 ) ) ) ) → ( ( 𝐴 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐾𝑛 ) ( 𝑛 𝑀 ) ) ) ) = 0 → ( 𝐴 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐹𝑛 ) ( 𝑛 𝑀 ) ) ) ) = 0 ) ) )
85 15 84 mpid ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝐹 ∈ ( 𝐿m0 ) ∧ 𝐹 finSupp 𝑍 ) ) → ( ( 𝐶𝑀 ) = ( 𝑃 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐹𝑛 ) · ( 𝑛 𝐸 𝑋 ) ) ) ) → ( 𝐴 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐹𝑛 ) ( 𝑛 𝑀 ) ) ) ) = 0 ) )