Metamath Proof Explorer


Theorem cbncms

Description: The induced metric on complex Banach space is complete. (Contributed by NM, 8-Sep-2007) Use bncmet (or preferably bncms ) instead. (New usage is discouraged.)

Ref Expression
Hypotheses iscbn.x 𝑋 = ( BaseSet ‘ 𝑈 )
iscbn.8 𝐷 = ( IndMet ‘ 𝑈 )
Assertion cbncms ( 𝑈 ∈ CBan → 𝐷 ∈ ( CMet ‘ 𝑋 ) )

Proof

Step Hyp Ref Expression
1 iscbn.x 𝑋 = ( BaseSet ‘ 𝑈 )
2 iscbn.8 𝐷 = ( IndMet ‘ 𝑈 )
3 1 2 iscbn ( 𝑈 ∈ CBan ↔ ( 𝑈 ∈ NrmCVec ∧ 𝐷 ∈ ( CMet ‘ 𝑋 ) ) )
4 3 simprbi ( 𝑈 ∈ CBan → 𝐷 ∈ ( CMet ‘ 𝑋 ) )