Step |
Hyp |
Ref |
Expression |
1 |
|
cbv1v.1 |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
cbv1v.2 |
⊢ Ⅎ 𝑦 𝜑 |
3 |
|
cbv1v.3 |
⊢ ( 𝜑 → Ⅎ 𝑦 𝜓 ) |
4 |
|
cbv1v.4 |
⊢ ( 𝜑 → Ⅎ 𝑥 𝜒 ) |
5 |
|
cbv1v.5 |
⊢ ( 𝜑 → ( 𝑥 = 𝑦 → ( 𝜓 → 𝜒 ) ) ) |
6 |
2 3
|
nfim1 |
⊢ Ⅎ 𝑦 ( 𝜑 → 𝜓 ) |
7 |
1 4
|
nfim1 |
⊢ Ⅎ 𝑥 ( 𝜑 → 𝜒 ) |
8 |
5
|
com12 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 → ( 𝜓 → 𝜒 ) ) ) |
9 |
8
|
a2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 → 𝜓 ) → ( 𝜑 → 𝜒 ) ) ) |
10 |
6 7 9
|
cbv3v |
⊢ ( ∀ 𝑥 ( 𝜑 → 𝜓 ) → ∀ 𝑦 ( 𝜑 → 𝜒 ) ) |
11 |
1
|
19.21 |
⊢ ( ∀ 𝑥 ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → ∀ 𝑥 𝜓 ) ) |
12 |
2
|
19.21 |
⊢ ( ∀ 𝑦 ( 𝜑 → 𝜒 ) ↔ ( 𝜑 → ∀ 𝑦 𝜒 ) ) |
13 |
10 11 12
|
3imtr3i |
⊢ ( ( 𝜑 → ∀ 𝑥 𝜓 ) → ( 𝜑 → ∀ 𝑦 𝜒 ) ) |
14 |
13
|
pm2.86i |
⊢ ( 𝜑 → ( ∀ 𝑥 𝜓 → ∀ 𝑦 𝜒 ) ) |