Step |
Hyp |
Ref |
Expression |
1 |
|
cbv2h.1 |
⊢ ( 𝜑 → ( 𝜓 → ∀ 𝑦 𝜓 ) ) |
2 |
|
cbv2h.2 |
⊢ ( 𝜑 → ( 𝜒 → ∀ 𝑥 𝜒 ) ) |
3 |
|
cbv2h.3 |
⊢ ( 𝜑 → ( 𝑥 = 𝑦 → ( 𝜓 ↔ 𝜒 ) ) ) |
4 |
|
biimp |
⊢ ( ( 𝜓 ↔ 𝜒 ) → ( 𝜓 → 𝜒 ) ) |
5 |
3 4
|
syl6 |
⊢ ( 𝜑 → ( 𝑥 = 𝑦 → ( 𝜓 → 𝜒 ) ) ) |
6 |
1 2 5
|
cbv1h |
⊢ ( ∀ 𝑥 ∀ 𝑦 𝜑 → ( ∀ 𝑥 𝜓 → ∀ 𝑦 𝜒 ) ) |
7 |
|
equcomi |
⊢ ( 𝑦 = 𝑥 → 𝑥 = 𝑦 ) |
8 |
|
biimpr |
⊢ ( ( 𝜓 ↔ 𝜒 ) → ( 𝜒 → 𝜓 ) ) |
9 |
7 3 8
|
syl56 |
⊢ ( 𝜑 → ( 𝑦 = 𝑥 → ( 𝜒 → 𝜓 ) ) ) |
10 |
2 1 9
|
cbv1h |
⊢ ( ∀ 𝑦 ∀ 𝑥 𝜑 → ( ∀ 𝑦 𝜒 → ∀ 𝑥 𝜓 ) ) |
11 |
10
|
alcoms |
⊢ ( ∀ 𝑥 ∀ 𝑦 𝜑 → ( ∀ 𝑦 𝜒 → ∀ 𝑥 𝜓 ) ) |
12 |
6 11
|
impbid |
⊢ ( ∀ 𝑥 ∀ 𝑦 𝜑 → ( ∀ 𝑥 𝜓 ↔ ∀ 𝑦 𝜒 ) ) |