Metamath Proof Explorer


Theorem cbv2w

Description: Rule used to change bound variables, using implicit substitution. Version of cbv2 with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 5-Aug-1993) (Revised by Gino Giotto, 10-Jan-2024)

Ref Expression
Hypotheses cbv2w.1 𝑥 𝜑
cbv2w.2 𝑦 𝜑
cbv2w.3 ( 𝜑 → Ⅎ 𝑦 𝜓 )
cbv2w.4 ( 𝜑 → Ⅎ 𝑥 𝜒 )
cbv2w.5 ( 𝜑 → ( 𝑥 = 𝑦 → ( 𝜓𝜒 ) ) )
Assertion cbv2w ( 𝜑 → ( ∀ 𝑥 𝜓 ↔ ∀ 𝑦 𝜒 ) )

Proof

Step Hyp Ref Expression
1 cbv2w.1 𝑥 𝜑
2 cbv2w.2 𝑦 𝜑
3 cbv2w.3 ( 𝜑 → Ⅎ 𝑦 𝜓 )
4 cbv2w.4 ( 𝜑 → Ⅎ 𝑥 𝜒 )
5 cbv2w.5 ( 𝜑 → ( 𝑥 = 𝑦 → ( 𝜓𝜒 ) ) )
6 biimp ( ( 𝜓𝜒 ) → ( 𝜓𝜒 ) )
7 5 6 syl6 ( 𝜑 → ( 𝑥 = 𝑦 → ( 𝜓𝜒 ) ) )
8 1 2 3 4 7 cbv1v ( 𝜑 → ( ∀ 𝑥 𝜓 → ∀ 𝑦 𝜒 ) )
9 equcomi ( 𝑦 = 𝑥𝑥 = 𝑦 )
10 biimpr ( ( 𝜓𝜒 ) → ( 𝜒𝜓 ) )
11 9 5 10 syl56 ( 𝜑 → ( 𝑦 = 𝑥 → ( 𝜒𝜓 ) ) )
12 2 1 4 3 11 cbv1v ( 𝜑 → ( ∀ 𝑦 𝜒 → ∀ 𝑥 𝜓 ) )
13 8 12 impbid ( 𝜑 → ( ∀ 𝑥 𝜓 ↔ ∀ 𝑦 𝜒 ) )