Metamath Proof Explorer


Theorem cbvab

Description: Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 . Usage of the weaker cbvabw and cbvabv are preferred. (Contributed by Andrew Salmon, 11-Jul-2011) (Proof shortened by Wolf Lammen, 16-Nov-2019) (New usage is discouraged.)

Ref Expression
Hypotheses cbvab.1 𝑦 𝜑
cbvab.2 𝑥 𝜓
cbvab.3 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
Assertion cbvab { 𝑥𝜑 } = { 𝑦𝜓 }

Proof

Step Hyp Ref Expression
1 cbvab.1 𝑦 𝜑
2 cbvab.2 𝑥 𝜓
3 cbvab.3 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
4 1 sbco2 ( [ 𝑧 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑧 / 𝑥 ] 𝜑 )
5 2 3 sbie ( [ 𝑦 / 𝑥 ] 𝜑𝜓 )
6 5 sbbii ( [ 𝑧 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑧 / 𝑦 ] 𝜓 )
7 4 6 bitr3i ( [ 𝑧 / 𝑥 ] 𝜑 ↔ [ 𝑧 / 𝑦 ] 𝜓 )
8 df-clab ( 𝑧 ∈ { 𝑥𝜑 } ↔ [ 𝑧 / 𝑥 ] 𝜑 )
9 df-clab ( 𝑧 ∈ { 𝑦𝜓 } ↔ [ 𝑧 / 𝑦 ] 𝜓 )
10 7 8 9 3bitr4i ( 𝑧 ∈ { 𝑥𝜑 } ↔ 𝑧 ∈ { 𝑦𝜓 } )
11 10 eqriv { 𝑥𝜑 } = { 𝑦𝜓 }