Metamath Proof Explorer


Theorem cbvabwOLD

Description: Obsolete version of cbvabw as of 23-May-2024. (Contributed by Andrew Salmon, 11-Jul-2011) (Revised by Gino Giotto, 10-Jan-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses cbvabw.1 𝑦 𝜑
cbvabw.2 𝑥 𝜓
cbvabw.3 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
Assertion cbvabwOLD { 𝑥𝜑 } = { 𝑦𝜓 }

Proof

Step Hyp Ref Expression
1 cbvabw.1 𝑦 𝜑
2 cbvabw.2 𝑥 𝜓
3 cbvabw.3 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
4 1 sbco2v ( [ 𝑧 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑧 / 𝑥 ] 𝜑 )
5 2 3 sbiev ( [ 𝑦 / 𝑥 ] 𝜑𝜓 )
6 5 sbbii ( [ 𝑧 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑧 / 𝑦 ] 𝜓 )
7 4 6 bitr3i ( [ 𝑧 / 𝑥 ] 𝜑 ↔ [ 𝑧 / 𝑦 ] 𝜓 )
8 df-clab ( 𝑧 ∈ { 𝑥𝜑 } ↔ [ 𝑧 / 𝑥 ] 𝜑 )
9 df-clab ( 𝑧 ∈ { 𝑦𝜓 } ↔ [ 𝑧 / 𝑦 ] 𝜓 )
10 7 8 9 3bitr4i ( 𝑧 ∈ { 𝑥𝜑 } ↔ 𝑧 ∈ { 𝑦𝜓 } )
11 10 eqriv { 𝑥𝜑 } = { 𝑦𝜓 }