Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Predicate calculus with equality: Auxiliary axiom schemes (4 schemes)
Axiom scheme ax-12 (Substitution)
cbval2v
Metamath Proof Explorer
Description: Rule used to change bound variables, using implicit substitution.
Version of cbval2 with a disjoint variable condition, which does not
require ax-13 . (Contributed by NM , 22-Dec-2003) (Revised by BJ , 16-Jun-2019) (Proof shortened by Gino Giotto , 10-Jan-2024)
Ref
Expression
Hypotheses
cbval2v.1
⊢ Ⅎ 𝑧 𝜑
cbval2v.2
⊢ Ⅎ 𝑤 𝜑
cbval2v.3
⊢ Ⅎ 𝑥 𝜓
cbval2v.4
⊢ Ⅎ 𝑦 𝜓
cbval2v.5
⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → ( 𝜑 ↔ 𝜓 ) )
Assertion
cbval2v
⊢ ( ∀ 𝑥 ∀ 𝑦 𝜑 ↔ ∀ 𝑧 ∀ 𝑤 𝜓 )
Proof
Step
Hyp
Ref
Expression
1
cbval2v.1
⊢ Ⅎ 𝑧 𝜑
2
cbval2v.2
⊢ Ⅎ 𝑤 𝜑
3
cbval2v.3
⊢ Ⅎ 𝑥 𝜓
4
cbval2v.4
⊢ Ⅎ 𝑦 𝜓
5
cbval2v.5
⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → ( 𝜑 ↔ 𝜓 ) )
6
1
nfal
⊢ Ⅎ 𝑧 ∀ 𝑦 𝜑
7
3
nfal
⊢ Ⅎ 𝑥 ∀ 𝑤 𝜓
8
nfv
⊢ Ⅎ 𝑦 𝑥 = 𝑧
9
nfv
⊢ Ⅎ 𝑤 𝑥 = 𝑧
10
2
a1i
⊢ ( 𝑥 = 𝑧 → Ⅎ 𝑤 𝜑 )
11
4
a1i
⊢ ( 𝑥 = 𝑧 → Ⅎ 𝑦 𝜓 )
12
5
ex
⊢ ( 𝑥 = 𝑧 → ( 𝑦 = 𝑤 → ( 𝜑 ↔ 𝜓 ) ) )
13
8 9 10 11 12
cbv2w
⊢ ( 𝑥 = 𝑧 → ( ∀ 𝑦 𝜑 ↔ ∀ 𝑤 𝜓 ) )
14
6 7 13
cbvalv1
⊢ ( ∀ 𝑥 ∀ 𝑦 𝜑 ↔ ∀ 𝑧 ∀ 𝑤 𝜓 )