Metamath Proof Explorer


Theorem cbvaldw

Description: Deduction used to change bound variables, using implicit substitution. Version of cbvald with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 2-Jan-2002) (Revised by Gino Giotto, 10-Jan-2024)

Ref Expression
Hypotheses cbvaldw.1 𝑦 𝜑
cbvaldw.2 ( 𝜑 → Ⅎ 𝑦 𝜓 )
cbvaldw.3 ( 𝜑 → ( 𝑥 = 𝑦 → ( 𝜓𝜒 ) ) )
Assertion cbvaldw ( 𝜑 → ( ∀ 𝑥 𝜓 ↔ ∀ 𝑦 𝜒 ) )

Proof

Step Hyp Ref Expression
1 cbvaldw.1 𝑦 𝜑
2 cbvaldw.2 ( 𝜑 → Ⅎ 𝑦 𝜓 )
3 cbvaldw.3 ( 𝜑 → ( 𝑥 = 𝑦 → ( 𝜓𝜒 ) ) )
4 nfv 𝑥 𝜑
5 nfvd ( 𝜑 → Ⅎ 𝑥 𝜒 )
6 4 1 2 5 3 cbv2w ( 𝜑 → ( ∀ 𝑥 𝜓 ↔ ∀ 𝑦 𝜒 ) )