Metamath Proof Explorer


Theorem cbvaliw

Description: Change bound variable. Uses only Tarski's FOL axiom schemes. Part of Lemma 7 of KalishMontague p. 86. (Contributed by NM, 19-Apr-2017)

Ref Expression
Hypotheses cbvaliw.1 ( ∀ 𝑥 𝜑 → ∀ 𝑦𝑥 𝜑 )
cbvaliw.2 ( ¬ 𝜓 → ∀ 𝑥 ¬ 𝜓 )
cbvaliw.3 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
Assertion cbvaliw ( ∀ 𝑥 𝜑 → ∀ 𝑦 𝜓 )

Proof

Step Hyp Ref Expression
1 cbvaliw.1 ( ∀ 𝑥 𝜑 → ∀ 𝑦𝑥 𝜑 )
2 cbvaliw.2 ( ¬ 𝜓 → ∀ 𝑥 ¬ 𝜓 )
3 cbvaliw.3 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
4 2 3 spimw ( ∀ 𝑥 𝜑𝜓 )
5 1 4 alrimih ( ∀ 𝑥 𝜑 → ∀ 𝑦 𝜓 )