Metamath Proof Explorer
Description: Change bound variable. Uses only Tarski's FOL axiom schemes.
(Contributed by NM, 9-Apr-2017)
|
|
Ref |
Expression |
|
Hypotheses |
cbvalw.1 |
⊢ ( ∀ 𝑥 𝜑 → ∀ 𝑦 ∀ 𝑥 𝜑 ) |
|
|
cbvalw.2 |
⊢ ( ¬ 𝜓 → ∀ 𝑥 ¬ 𝜓 ) |
|
|
cbvalw.3 |
⊢ ( ∀ 𝑦 𝜓 → ∀ 𝑥 ∀ 𝑦 𝜓 ) |
|
|
cbvalw.4 |
⊢ ( ¬ 𝜑 → ∀ 𝑦 ¬ 𝜑 ) |
|
|
cbvalw.5 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) |
|
Assertion |
cbvalw |
⊢ ( ∀ 𝑥 𝜑 ↔ ∀ 𝑦 𝜓 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cbvalw.1 |
⊢ ( ∀ 𝑥 𝜑 → ∀ 𝑦 ∀ 𝑥 𝜑 ) |
| 2 |
|
cbvalw.2 |
⊢ ( ¬ 𝜓 → ∀ 𝑥 ¬ 𝜓 ) |
| 3 |
|
cbvalw.3 |
⊢ ( ∀ 𝑦 𝜓 → ∀ 𝑥 ∀ 𝑦 𝜓 ) |
| 4 |
|
cbvalw.4 |
⊢ ( ¬ 𝜑 → ∀ 𝑦 ¬ 𝜑 ) |
| 5 |
|
cbvalw.5 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) |
| 6 |
5
|
biimpd |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 → 𝜓 ) ) |
| 7 |
1 2 6
|
cbvaliw |
⊢ ( ∀ 𝑥 𝜑 → ∀ 𝑦 𝜓 ) |
| 8 |
5
|
biimprd |
⊢ ( 𝑥 = 𝑦 → ( 𝜓 → 𝜑 ) ) |
| 9 |
8
|
equcoms |
⊢ ( 𝑦 = 𝑥 → ( 𝜓 → 𝜑 ) ) |
| 10 |
3 4 9
|
cbvaliw |
⊢ ( ∀ 𝑦 𝜓 → ∀ 𝑥 𝜑 ) |
| 11 |
7 10
|
impbii |
⊢ ( ∀ 𝑥 𝜑 ↔ ∀ 𝑦 𝜓 ) |