Metamath Proof Explorer


Theorem cbvcsbv

Description: Change the bound variable of a proper substitution into a class using implicit substitution. (Contributed by NM, 30-Sep-2008) (Revised by Mario Carneiro, 13-Oct-2016)

Ref Expression
Hypothesis cbvcsbv.1 ( 𝑥 = 𝑦𝐵 = 𝐶 )
Assertion cbvcsbv 𝐴 / 𝑥 𝐵 = 𝐴 / 𝑦 𝐶

Proof

Step Hyp Ref Expression
1 cbvcsbv.1 ( 𝑥 = 𝑦𝐵 = 𝐶 )
2 1 eleq2d ( 𝑥 = 𝑦 → ( 𝑧𝐵𝑧𝐶 ) )
3 2 cbvsbcvw ( [ 𝐴 / 𝑥 ] 𝑧𝐵[ 𝐴 / 𝑦 ] 𝑧𝐶 )
4 3 abbii { 𝑧[ 𝐴 / 𝑥 ] 𝑧𝐵 } = { 𝑧[ 𝐴 / 𝑦 ] 𝑧𝐶 }
5 df-csb 𝐴 / 𝑥 𝐵 = { 𝑧[ 𝐴 / 𝑥 ] 𝑧𝐵 }
6 df-csb 𝐴 / 𝑦 𝐶 = { 𝑧[ 𝐴 / 𝑦 ] 𝑧𝐶 }
7 4 5 6 3eqtr4i 𝐴 / 𝑥 𝐵 = 𝐴 / 𝑦 𝐶