Description: Change the bound variable of a proper substitution into a class using implicit substitution. (Contributed by NM, 30-Sep-2008) (Revised by Mario Carneiro, 13-Oct-2016)
Ref | Expression | ||
---|---|---|---|
Hypothesis | cbvcsbv.1 | ⊢ ( 𝑥 = 𝑦 → 𝐵 = 𝐶 ) | |
Assertion | cbvcsbv | ⊢ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = ⦋ 𝐴 / 𝑦 ⦌ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvcsbv.1 | ⊢ ( 𝑥 = 𝑦 → 𝐵 = 𝐶 ) | |
2 | 1 | eleq2d | ⊢ ( 𝑥 = 𝑦 → ( 𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐶 ) ) |
3 | 2 | cbvsbcvw | ⊢ ( [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝐵 ↔ [ 𝐴 / 𝑦 ] 𝑧 ∈ 𝐶 ) |
4 | 3 | abbii | ⊢ { 𝑧 ∣ [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝐵 } = { 𝑧 ∣ [ 𝐴 / 𝑦 ] 𝑧 ∈ 𝐶 } |
5 | df-csb | ⊢ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = { 𝑧 ∣ [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝐵 } | |
6 | df-csb | ⊢ ⦋ 𝐴 / 𝑦 ⦌ 𝐶 = { 𝑧 ∣ [ 𝐴 / 𝑦 ] 𝑧 ∈ 𝐶 } | |
7 | 4 5 6 | 3eqtr4i | ⊢ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = ⦋ 𝐴 / 𝑦 ⦌ 𝐶 |