Metamath Proof Explorer


Theorem cbvcsbw

Description: Change bound variables in a class substitution. Interestingly, this does not require any bound variable conditions on A . Version of cbvcsb with a disjoint variable condition, which does not require ax-13 . (Contributed by Jeff Hankins, 13-Sep-2009) (Revised by Gino Giotto, 10-Jan-2024)

Ref Expression
Hypotheses cbvcsbw.1 𝑦 𝐶
cbvcsbw.2 𝑥 𝐷
cbvcsbw.3 ( 𝑥 = 𝑦𝐶 = 𝐷 )
Assertion cbvcsbw 𝐴 / 𝑥 𝐶 = 𝐴 / 𝑦 𝐷

Proof

Step Hyp Ref Expression
1 cbvcsbw.1 𝑦 𝐶
2 cbvcsbw.2 𝑥 𝐷
3 cbvcsbw.3 ( 𝑥 = 𝑦𝐶 = 𝐷 )
4 1 nfcri 𝑦 𝑧𝐶
5 2 nfcri 𝑥 𝑧𝐷
6 3 eleq2d ( 𝑥 = 𝑦 → ( 𝑧𝐶𝑧𝐷 ) )
7 4 5 6 cbvsbcw ( [ 𝐴 / 𝑥 ] 𝑧𝐶[ 𝐴 / 𝑦 ] 𝑧𝐷 )
8 7 abbii { 𝑧[ 𝐴 / 𝑥 ] 𝑧𝐶 } = { 𝑧[ 𝐴 / 𝑦 ] 𝑧𝐷 }
9 df-csb 𝐴 / 𝑥 𝐶 = { 𝑧[ 𝐴 / 𝑥 ] 𝑧𝐶 }
10 df-csb 𝐴 / 𝑦 𝐷 = { 𝑧[ 𝐴 / 𝑦 ] 𝑧𝐷 }
11 8 9 10 3eqtr4i 𝐴 / 𝑥 𝐶 = 𝐴 / 𝑦 𝐷