Description: Change bound variables in a disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cbvdisj.1 | ⊢ Ⅎ 𝑦 𝐵 | |
cbvdisj.2 | ⊢ Ⅎ 𝑥 𝐶 | ||
cbvdisj.3 | ⊢ ( 𝑥 = 𝑦 → 𝐵 = 𝐶 ) | ||
Assertion | cbvdisj | ⊢ ( Disj 𝑥 ∈ 𝐴 𝐵 ↔ Disj 𝑦 ∈ 𝐴 𝐶 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvdisj.1 | ⊢ Ⅎ 𝑦 𝐵 | |
2 | cbvdisj.2 | ⊢ Ⅎ 𝑥 𝐶 | |
3 | cbvdisj.3 | ⊢ ( 𝑥 = 𝑦 → 𝐵 = 𝐶 ) | |
4 | 1 | nfcri | ⊢ Ⅎ 𝑦 𝑧 ∈ 𝐵 |
5 | 2 | nfcri | ⊢ Ⅎ 𝑥 𝑧 ∈ 𝐶 |
6 | 3 | eleq2d | ⊢ ( 𝑥 = 𝑦 → ( 𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐶 ) ) |
7 | 4 5 6 | cbvrmow | ⊢ ( ∃* 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ↔ ∃* 𝑦 ∈ 𝐴 𝑧 ∈ 𝐶 ) |
8 | 7 | albii | ⊢ ( ∀ 𝑧 ∃* 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ↔ ∀ 𝑧 ∃* 𝑦 ∈ 𝐴 𝑧 ∈ 𝐶 ) |
9 | df-disj | ⊢ ( Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀ 𝑧 ∃* 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ) | |
10 | df-disj | ⊢ ( Disj 𝑦 ∈ 𝐴 𝐶 ↔ ∀ 𝑧 ∃* 𝑦 ∈ 𝐴 𝑧 ∈ 𝐶 ) | |
11 | 8 9 10 | 3bitr4i | ⊢ ( Disj 𝑥 ∈ 𝐴 𝐵 ↔ Disj 𝑦 ∈ 𝐴 𝐶 ) |