Description: Change bound variables in a disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cbvdisj.1 | ⊢ Ⅎ 𝑦 𝐵 | |
| cbvdisj.2 | ⊢ Ⅎ 𝑥 𝐶 | ||
| cbvdisj.3 | ⊢ ( 𝑥 = 𝑦 → 𝐵 = 𝐶 ) | ||
| Assertion | cbvdisj | ⊢ ( Disj 𝑥 ∈ 𝐴 𝐵 ↔ Disj 𝑦 ∈ 𝐴 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvdisj.1 | ⊢ Ⅎ 𝑦 𝐵 | |
| 2 | cbvdisj.2 | ⊢ Ⅎ 𝑥 𝐶 | |
| 3 | cbvdisj.3 | ⊢ ( 𝑥 = 𝑦 → 𝐵 = 𝐶 ) | |
| 4 | 1 | nfcri | ⊢ Ⅎ 𝑦 𝑧 ∈ 𝐵 |
| 5 | 2 | nfcri | ⊢ Ⅎ 𝑥 𝑧 ∈ 𝐶 |
| 6 | 3 | eleq2d | ⊢ ( 𝑥 = 𝑦 → ( 𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐶 ) ) |
| 7 | 4 5 6 | cbvrmow | ⊢ ( ∃* 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ↔ ∃* 𝑦 ∈ 𝐴 𝑧 ∈ 𝐶 ) |
| 8 | 7 | albii | ⊢ ( ∀ 𝑧 ∃* 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ↔ ∀ 𝑧 ∃* 𝑦 ∈ 𝐴 𝑧 ∈ 𝐶 ) |
| 9 | df-disj | ⊢ ( Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀ 𝑧 ∃* 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ) | |
| 10 | df-disj | ⊢ ( Disj 𝑦 ∈ 𝐴 𝐶 ↔ ∀ 𝑧 ∃* 𝑦 ∈ 𝐴 𝑧 ∈ 𝐶 ) | |
| 11 | 8 9 10 | 3bitr4i | ⊢ ( Disj 𝑥 ∈ 𝐴 𝐵 ↔ Disj 𝑦 ∈ 𝐴 𝐶 ) |