Metamath Proof Explorer


Theorem cbvdisj

Description: Change bound variables in a disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016)

Ref Expression
Hypotheses cbvdisj.1 𝑦 𝐵
cbvdisj.2 𝑥 𝐶
cbvdisj.3 ( 𝑥 = 𝑦𝐵 = 𝐶 )
Assertion cbvdisj ( Disj 𝑥𝐴 𝐵Disj 𝑦𝐴 𝐶 )

Proof

Step Hyp Ref Expression
1 cbvdisj.1 𝑦 𝐵
2 cbvdisj.2 𝑥 𝐶
3 cbvdisj.3 ( 𝑥 = 𝑦𝐵 = 𝐶 )
4 1 nfcri 𝑦 𝑧𝐵
5 2 nfcri 𝑥 𝑧𝐶
6 3 eleq2d ( 𝑥 = 𝑦 → ( 𝑧𝐵𝑧𝐶 ) )
7 4 5 6 cbvrmow ( ∃* 𝑥𝐴 𝑧𝐵 ↔ ∃* 𝑦𝐴 𝑧𝐶 )
8 7 albii ( ∀ 𝑧 ∃* 𝑥𝐴 𝑧𝐵 ↔ ∀ 𝑧 ∃* 𝑦𝐴 𝑧𝐶 )
9 df-disj ( Disj 𝑥𝐴 𝐵 ↔ ∀ 𝑧 ∃* 𝑥𝐴 𝑧𝐵 )
10 df-disj ( Disj 𝑦𝐴 𝐶 ↔ ∀ 𝑧 ∃* 𝑦𝐴 𝑧𝐶 )
11 8 9 10 3bitr4i ( Disj 𝑥𝐴 𝐵Disj 𝑦𝐴 𝐶 )