Metamath Proof Explorer
Description: Change bound variables in a disjoint collection. (Contributed by Mario
Carneiro, 11-Dec-2016)
|
|
Ref |
Expression |
|
Hypothesis |
cbvdisjv.1 |
⊢ ( 𝑥 = 𝑦 → 𝐵 = 𝐶 ) |
|
Assertion |
cbvdisjv |
⊢ ( Disj 𝑥 ∈ 𝐴 𝐵 ↔ Disj 𝑦 ∈ 𝐴 𝐶 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
cbvdisjv.1 |
⊢ ( 𝑥 = 𝑦 → 𝐵 = 𝐶 ) |
2 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐵 |
3 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐶 |
4 |
2 3 1
|
cbvdisj |
⊢ ( Disj 𝑥 ∈ 𝐴 𝐵 ↔ Disj 𝑦 ∈ 𝐴 𝐶 ) |