Metamath Proof Explorer


Theorem cbvdisjv

Description: Change bound variables in a disjoint collection. (Contributed by Mario Carneiro, 11-Dec-2016)

Ref Expression
Hypothesis cbvdisjv.1 ( 𝑥 = 𝑦𝐵 = 𝐶 )
Assertion cbvdisjv ( Disj 𝑥𝐴 𝐵Disj 𝑦𝐴 𝐶 )

Proof

Step Hyp Ref Expression
1 cbvdisjv.1 ( 𝑥 = 𝑦𝐵 = 𝐶 )
2 nfcv 𝑦 𝐵
3 nfcv 𝑥 𝐶
4 2 3 1 cbvdisj ( Disj 𝑥𝐴 𝐵Disj 𝑦𝐴 𝐶 )