Description: Change bound variables in a disjoint collection. (Contributed by Mario Carneiro, 11-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cbvdisjv.1 | ⊢ ( 𝑥 = 𝑦 → 𝐵 = 𝐶 ) | |
| Assertion | cbvdisjv | ⊢ ( Disj 𝑥 ∈ 𝐴 𝐵 ↔ Disj 𝑦 ∈ 𝐴 𝐶 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cbvdisjv.1 | ⊢ ( 𝑥 = 𝑦 → 𝐵 = 𝐶 ) | |
| 2 | 1 | eleq2d | ⊢ ( 𝑥 = 𝑦 → ( 𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐶 ) ) | 
| 3 | 2 | cbvrmovw | ⊢ ( ∃* 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ↔ ∃* 𝑦 ∈ 𝐴 𝑧 ∈ 𝐶 ) | 
| 4 | 3 | albii | ⊢ ( ∀ 𝑧 ∃* 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ↔ ∀ 𝑧 ∃* 𝑦 ∈ 𝐴 𝑧 ∈ 𝐶 ) | 
| 5 | df-disj | ⊢ ( Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀ 𝑧 ∃* 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ) | |
| 6 | df-disj | ⊢ ( Disj 𝑦 ∈ 𝐴 𝐶 ↔ ∀ 𝑧 ∃* 𝑦 ∈ 𝐴 𝑧 ∈ 𝐶 ) | |
| 7 | 4 5 6 | 3bitr4i | ⊢ ( Disj 𝑥 ∈ 𝐴 𝐵 ↔ Disj 𝑦 ∈ 𝐴 𝐶 ) |