Metamath Proof Explorer


Theorem cbveu

Description: Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker cbveuw , cbveuvw when possible. (Contributed by NM, 25-Nov-1994) (Revised by Mario Carneiro, 7-Oct-2016) (New usage is discouraged.)

Ref Expression
Hypotheses cbveu.1 𝑦 𝜑
cbveu.2 𝑥 𝜓
cbveu.3 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
Assertion cbveu ( ∃! 𝑥 𝜑 ↔ ∃! 𝑦 𝜓 )

Proof

Step Hyp Ref Expression
1 cbveu.1 𝑦 𝜑
2 cbveu.2 𝑥 𝜓
3 cbveu.3 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
4 1 sb8eu ( ∃! 𝑥 𝜑 ↔ ∃! 𝑦 [ 𝑦 / 𝑥 ] 𝜑 )
5 2 3 sbie ( [ 𝑦 / 𝑥 ] 𝜑𝜓 )
6 5 eubii ( ∃! 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ↔ ∃! 𝑦 𝜓 )
7 4 6 bitri ( ∃! 𝑥 𝜑 ↔ ∃! 𝑦 𝜓 )