Metamath Proof Explorer


Theorem cbveuvw

Description: Change bound variable. Uses only Tarski's FOL axiom schemes. See cbveu for a version with fewer disjoint variable conditions but requiring more axioms. (Contributed by NM, 25-Nov-1994) (Revised by Gino Giotto, 30-Sep-2024)

Ref Expression
Hypothesis cbveuvw.1 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
Assertion cbveuvw ( ∃! 𝑥 𝜑 ↔ ∃! 𝑦 𝜓 )

Proof

Step Hyp Ref Expression
1 cbveuvw.1 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
2 1 cbvexvw ( ∃ 𝑥 𝜑 ↔ ∃ 𝑦 𝜓 )
3 1 cbvmovw ( ∃* 𝑥 𝜑 ↔ ∃* 𝑦 𝜓 )
4 2 3 anbi12i ( ( ∃ 𝑥 𝜑 ∧ ∃* 𝑥 𝜑 ) ↔ ( ∃ 𝑦 𝜓 ∧ ∃* 𝑦 𝜓 ) )
5 df-eu ( ∃! 𝑥 𝜑 ↔ ( ∃ 𝑥 𝜑 ∧ ∃* 𝑥 𝜑 ) )
6 df-eu ( ∃! 𝑦 𝜓 ↔ ( ∃ 𝑦 𝜓 ∧ ∃* 𝑦 𝜓 ) )
7 4 5 6 3bitr4i ( ∃! 𝑥 𝜑 ↔ ∃! 𝑦 𝜓 )