Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Uniqueness and unique existence
Unique existence: the unique existential quantifier
cbveuw
Metamath Proof Explorer
Description: Version of cbveu with a disjoint variable condition, which does not
require ax-10 , ax-13 . (Contributed by NM , 25-Nov-1994) (Revised by Gino Giotto , 23-May-2024)
Ref
Expression
Hypotheses
cbveuw.1
⊢ Ⅎ 𝑦 𝜑
cbveuw.2
⊢ Ⅎ 𝑥 𝜓
cbveuw.3
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) )
Assertion
cbveuw
⊢ ( ∃! 𝑥 𝜑 ↔ ∃! 𝑦 𝜓 )
Proof
Step
Hyp
Ref
Expression
1
cbveuw.1
⊢ Ⅎ 𝑦 𝜑
2
cbveuw.2
⊢ Ⅎ 𝑥 𝜓
3
cbveuw.3
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) )
4
1 2 3
cbvexv1
⊢ ( ∃ 𝑥 𝜑 ↔ ∃ 𝑦 𝜓 )
5
1 2 3
cbvmow
⊢ ( ∃* 𝑥 𝜑 ↔ ∃* 𝑦 𝜓 )
6
4 5
anbi12i
⊢ ( ( ∃ 𝑥 𝜑 ∧ ∃* 𝑥 𝜑 ) ↔ ( ∃ 𝑦 𝜓 ∧ ∃* 𝑦 𝜓 ) )
7
df-eu
⊢ ( ∃! 𝑥 𝜑 ↔ ( ∃ 𝑥 𝜑 ∧ ∃* 𝑥 𝜑 ) )
8
df-eu
⊢ ( ∃! 𝑦 𝜓 ↔ ( ∃ 𝑦 𝜓 ∧ ∃* 𝑦 𝜓 ) )
9
6 7 8
3bitr4i
⊢ ( ∃! 𝑥 𝜑 ↔ ∃! 𝑦 𝜓 )