Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Uniqueness and unique existence
Unique existence: the unique existential quantifier
cbveuwOLD
Metamath Proof Explorer
Description: Obsolete version of cbveuw as of 23-May-2024. (Contributed by NM , 25-Nov-1994) (Revised by Gino Giotto , 10-Jan-2024)
(Proof modification is discouraged.) (New usage is discouraged.)
Ref
Expression
Hypotheses
cbveuwOLD.1
⊢ Ⅎ 𝑦 𝜑
cbveuwOLD.2
⊢ Ⅎ 𝑥 𝜓
cbveuwOLD.3
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) )
Assertion
cbveuwOLD
⊢ ( ∃! 𝑥 𝜑 ↔ ∃! 𝑦 𝜓 )
Proof
Step
Hyp
Ref
Expression
1
cbveuwOLD.1
⊢ Ⅎ 𝑦 𝜑
2
cbveuwOLD.2
⊢ Ⅎ 𝑥 𝜓
3
cbveuwOLD.3
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) )
4
1
sb8euv
⊢ ( ∃! 𝑥 𝜑 ↔ ∃! 𝑦 [ 𝑦 / 𝑥 ] 𝜑 )
5
2 3
sbiev
⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜓 )
6
5
eubii
⊢ ( ∃! 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ↔ ∃! 𝑦 𝜓 )
7
4 6
bitri
⊢ ( ∃! 𝑥 𝜑 ↔ ∃! 𝑦 𝜓 )