Metamath Proof Explorer


Theorem cbveuwOLD

Description: Obsolete version of cbveuw as of 23-May-2024. (Contributed by NM, 25-Nov-1994) (Revised by Gino Giotto, 10-Jan-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses cbveuwOLD.1 𝑦 𝜑
cbveuwOLD.2 𝑥 𝜓
cbveuwOLD.3 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
Assertion cbveuwOLD ( ∃! 𝑥 𝜑 ↔ ∃! 𝑦 𝜓 )

Proof

Step Hyp Ref Expression
1 cbveuwOLD.1 𝑦 𝜑
2 cbveuwOLD.2 𝑥 𝜓
3 cbveuwOLD.3 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
4 1 sb8euv ( ∃! 𝑥 𝜑 ↔ ∃! 𝑦 [ 𝑦 / 𝑥 ] 𝜑 )
5 2 3 sbiev ( [ 𝑦 / 𝑥 ] 𝜑𝜓 )
6 5 eubii ( ∃! 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ↔ ∃! 𝑦 𝜓 )
7 4 6 bitri ( ∃! 𝑥 𝜑 ↔ ∃! 𝑦 𝜓 )