Step |
Hyp |
Ref |
Expression |
1 |
|
cbval2v.1 |
⊢ Ⅎ 𝑧 𝜑 |
2 |
|
cbval2v.2 |
⊢ Ⅎ 𝑤 𝜑 |
3 |
|
cbval2v.3 |
⊢ Ⅎ 𝑥 𝜓 |
4 |
|
cbval2v.4 |
⊢ Ⅎ 𝑦 𝜓 |
5 |
|
cbval2v.5 |
⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → ( 𝜑 ↔ 𝜓 ) ) |
6 |
1
|
nfn |
⊢ Ⅎ 𝑧 ¬ 𝜑 |
7 |
2
|
nfn |
⊢ Ⅎ 𝑤 ¬ 𝜑 |
8 |
3
|
nfn |
⊢ Ⅎ 𝑥 ¬ 𝜓 |
9 |
4
|
nfn |
⊢ Ⅎ 𝑦 ¬ 𝜓 |
10 |
5
|
notbid |
⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → ( ¬ 𝜑 ↔ ¬ 𝜓 ) ) |
11 |
6 7 8 9 10
|
cbval2v |
⊢ ( ∀ 𝑥 ∀ 𝑦 ¬ 𝜑 ↔ ∀ 𝑧 ∀ 𝑤 ¬ 𝜓 ) |
12 |
|
2nexaln |
⊢ ( ¬ ∃ 𝑥 ∃ 𝑦 𝜑 ↔ ∀ 𝑥 ∀ 𝑦 ¬ 𝜑 ) |
13 |
|
2nexaln |
⊢ ( ¬ ∃ 𝑧 ∃ 𝑤 𝜓 ↔ ∀ 𝑧 ∀ 𝑤 ¬ 𝜓 ) |
14 |
11 12 13
|
3bitr4i |
⊢ ( ¬ ∃ 𝑥 ∃ 𝑦 𝜑 ↔ ¬ ∃ 𝑧 ∃ 𝑤 𝜓 ) |
15 |
14
|
con4bii |
⊢ ( ∃ 𝑥 ∃ 𝑦 𝜑 ↔ ∃ 𝑧 ∃ 𝑤 𝜓 ) |