| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cbval2v.1 | ⊢ Ⅎ 𝑧 𝜑 | 
						
							| 2 |  | cbval2v.2 | ⊢ Ⅎ 𝑤 𝜑 | 
						
							| 3 |  | cbval2v.3 | ⊢ Ⅎ 𝑥 𝜓 | 
						
							| 4 |  | cbval2v.4 | ⊢ Ⅎ 𝑦 𝜓 | 
						
							| 5 |  | cbval2v.5 | ⊢ ( ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 )  →  ( 𝜑  ↔  𝜓 ) ) | 
						
							| 6 | 1 | nfn | ⊢ Ⅎ 𝑧 ¬  𝜑 | 
						
							| 7 | 2 | nfn | ⊢ Ⅎ 𝑤 ¬  𝜑 | 
						
							| 8 | 3 | nfn | ⊢ Ⅎ 𝑥 ¬  𝜓 | 
						
							| 9 | 4 | nfn | ⊢ Ⅎ 𝑦 ¬  𝜓 | 
						
							| 10 | 5 | notbid | ⊢ ( ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 )  →  ( ¬  𝜑  ↔  ¬  𝜓 ) ) | 
						
							| 11 | 6 7 8 9 10 | cbval2v | ⊢ ( ∀ 𝑥 ∀ 𝑦 ¬  𝜑  ↔  ∀ 𝑧 ∀ 𝑤 ¬  𝜓 ) | 
						
							| 12 |  | 2nexaln | ⊢ ( ¬  ∃ 𝑥 ∃ 𝑦 𝜑  ↔  ∀ 𝑥 ∀ 𝑦 ¬  𝜑 ) | 
						
							| 13 |  | 2nexaln | ⊢ ( ¬  ∃ 𝑧 ∃ 𝑤 𝜓  ↔  ∀ 𝑧 ∀ 𝑤 ¬  𝜓 ) | 
						
							| 14 | 11 12 13 | 3bitr4i | ⊢ ( ¬  ∃ 𝑥 ∃ 𝑦 𝜑  ↔  ¬  ∃ 𝑧 ∃ 𝑤 𝜓 ) | 
						
							| 15 | 14 | con4bii | ⊢ ( ∃ 𝑥 ∃ 𝑦 𝜑  ↔  ∃ 𝑧 ∃ 𝑤 𝜓 ) |