Metamath Proof Explorer


Theorem cbvex2v

Description: Rule used to change bound variables, using implicit substitution. Version of cbvex2 with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 14-Sep-2003) (Revised by BJ, 16-Jun-2019)

Ref Expression
Hypotheses cbval2v.1 𝑧 𝜑
cbval2v.2 𝑤 𝜑
cbval2v.3 𝑥 𝜓
cbval2v.4 𝑦 𝜓
cbval2v.5 ( ( 𝑥 = 𝑧𝑦 = 𝑤 ) → ( 𝜑𝜓 ) )
Assertion cbvex2v ( ∃ 𝑥𝑦 𝜑 ↔ ∃ 𝑧𝑤 𝜓 )

Proof

Step Hyp Ref Expression
1 cbval2v.1 𝑧 𝜑
2 cbval2v.2 𝑤 𝜑
3 cbval2v.3 𝑥 𝜓
4 cbval2v.4 𝑦 𝜓
5 cbval2v.5 ( ( 𝑥 = 𝑧𝑦 = 𝑤 ) → ( 𝜑𝜓 ) )
6 1 nfn 𝑧 ¬ 𝜑
7 2 nfn 𝑤 ¬ 𝜑
8 3 nfn 𝑥 ¬ 𝜓
9 4 nfn 𝑦 ¬ 𝜓
10 5 notbid ( ( 𝑥 = 𝑧𝑦 = 𝑤 ) → ( ¬ 𝜑 ↔ ¬ 𝜓 ) )
11 6 7 8 9 10 cbval2v ( ∀ 𝑥𝑦 ¬ 𝜑 ↔ ∀ 𝑧𝑤 ¬ 𝜓 )
12 2nexaln ( ¬ ∃ 𝑥𝑦 𝜑 ↔ ∀ 𝑥𝑦 ¬ 𝜑 )
13 2nexaln ( ¬ ∃ 𝑧𝑤 𝜓 ↔ ∀ 𝑧𝑤 ¬ 𝜓 )
14 11 12 13 3bitr4i ( ¬ ∃ 𝑥𝑦 𝜑 ↔ ¬ ∃ 𝑧𝑤 𝜓 )
15 14 con4bii ( ∃ 𝑥𝑦 𝜑 ↔ ∃ 𝑧𝑤 𝜓 )