Metamath Proof Explorer


Theorem cbvex4v

Description: Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker cbvex4vw if possible. (Contributed by NM, 26-Jul-1995) (New usage is discouraged.)

Ref Expression
Hypotheses cbvex4v.1 ( ( 𝑥 = 𝑣𝑦 = 𝑢 ) → ( 𝜑𝜓 ) )
cbvex4v.2 ( ( 𝑧 = 𝑓𝑤 = 𝑔 ) → ( 𝜓𝜒 ) )
Assertion cbvex4v ( ∃ 𝑥𝑦𝑧𝑤 𝜑 ↔ ∃ 𝑣𝑢𝑓𝑔 𝜒 )

Proof

Step Hyp Ref Expression
1 cbvex4v.1 ( ( 𝑥 = 𝑣𝑦 = 𝑢 ) → ( 𝜑𝜓 ) )
2 cbvex4v.2 ( ( 𝑧 = 𝑓𝑤 = 𝑔 ) → ( 𝜓𝜒 ) )
3 1 2exbidv ( ( 𝑥 = 𝑣𝑦 = 𝑢 ) → ( ∃ 𝑧𝑤 𝜑 ↔ ∃ 𝑧𝑤 𝜓 ) )
4 3 cbvex2vv ( ∃ 𝑥𝑦𝑧𝑤 𝜑 ↔ ∃ 𝑣𝑢𝑧𝑤 𝜓 )
5 2 cbvex2vv ( ∃ 𝑧𝑤 𝜓 ↔ ∃ 𝑓𝑔 𝜒 )
6 5 2exbii ( ∃ 𝑣𝑢𝑧𝑤 𝜓 ↔ ∃ 𝑣𝑢𝑓𝑔 𝜒 )
7 4 6 bitri ( ∃ 𝑥𝑦𝑧𝑤 𝜑 ↔ ∃ 𝑣𝑢𝑓𝑔 𝜒 )