Metamath Proof Explorer


Theorem cbvex4vw

Description: Rule used to change bound variables, using implicit substitution. Version of cbvex4v with more disjoint variable conditions, which requires fewer axioms. (Contributed by NM, 26-Jul-1995) (Revised by Gino Giotto, 10-Jan-2024)

Ref Expression
Hypotheses cbvex4vw.1 ( ( 𝑥 = 𝑣𝑦 = 𝑢 ) → ( 𝜑𝜓 ) )
cbvex4vw.2 ( ( 𝑧 = 𝑓𝑤 = 𝑔 ) → ( 𝜓𝜒 ) )
Assertion cbvex4vw ( ∃ 𝑥𝑦𝑧𝑤 𝜑 ↔ ∃ 𝑣𝑢𝑓𝑔 𝜒 )

Proof

Step Hyp Ref Expression
1 cbvex4vw.1 ( ( 𝑥 = 𝑣𝑦 = 𝑢 ) → ( 𝜑𝜓 ) )
2 cbvex4vw.2 ( ( 𝑧 = 𝑓𝑤 = 𝑔 ) → ( 𝜓𝜒 ) )
3 1 2exbidv ( ( 𝑥 = 𝑣𝑦 = 𝑢 ) → ( ∃ 𝑧𝑤 𝜑 ↔ ∃ 𝑧𝑤 𝜓 ) )
4 3 cbvex2vw ( ∃ 𝑥𝑦𝑧𝑤 𝜑 ↔ ∃ 𝑣𝑢𝑧𝑤 𝜓 )
5 2 cbvex2vw ( ∃ 𝑧𝑤 𝜓 ↔ ∃ 𝑓𝑔 𝜒 )
6 5 2exbii ( ∃ 𝑣𝑢𝑧𝑤 𝜓 ↔ ∃ 𝑣𝑢𝑓𝑔 𝜒 )
7 4 6 bitri ( ∃ 𝑥𝑦𝑧𝑤 𝜑 ↔ ∃ 𝑣𝑢𝑓𝑔 𝜒 )