Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Predicate calculus with equality: Auxiliary axiom schemes (4 schemes)
Axiom scheme ax-12 (Substitution)
cbvexdw
Metamath Proof Explorer
Description: Deduction used to change bound variables, using implicit substitution.
Version of cbvexd with a disjoint variable condition, which does not
require ax-13 . (Contributed by NM , 2-Jan-2002) (Revised by Gino
Giotto , 10-Jan-2024)
Ref
Expression
Hypotheses
cbvaldw.1
⊢ Ⅎ 𝑦 𝜑
cbvaldw.2
⊢ ( 𝜑 → Ⅎ 𝑦 𝜓 )
cbvaldw.3
⊢ ( 𝜑 → ( 𝑥 = 𝑦 → ( 𝜓 ↔ 𝜒 ) ) )
Assertion
cbvexdw
⊢ ( 𝜑 → ( ∃ 𝑥 𝜓 ↔ ∃ 𝑦 𝜒 ) )
Proof
Step
Hyp
Ref
Expression
1
cbvaldw.1
⊢ Ⅎ 𝑦 𝜑
2
cbvaldw.2
⊢ ( 𝜑 → Ⅎ 𝑦 𝜓 )
3
cbvaldw.3
⊢ ( 𝜑 → ( 𝑥 = 𝑦 → ( 𝜓 ↔ 𝜒 ) ) )
4
2
nfnd
⊢ ( 𝜑 → Ⅎ 𝑦 ¬ 𝜓 )
5
notbi
⊢ ( ( 𝜓 ↔ 𝜒 ) ↔ ( ¬ 𝜓 ↔ ¬ 𝜒 ) )
6
3 5
syl6ib
⊢ ( 𝜑 → ( 𝑥 = 𝑦 → ( ¬ 𝜓 ↔ ¬ 𝜒 ) ) )
7
1 4 6
cbvaldw
⊢ ( 𝜑 → ( ∀ 𝑥 ¬ 𝜓 ↔ ∀ 𝑦 ¬ 𝜒 ) )
8
alnex
⊢ ( ∀ 𝑥 ¬ 𝜓 ↔ ¬ ∃ 𝑥 𝜓 )
9
alnex
⊢ ( ∀ 𝑦 ¬ 𝜒 ↔ ¬ ∃ 𝑦 𝜒 )
10
7 8 9
3bitr3g
⊢ ( 𝜑 → ( ¬ ∃ 𝑥 𝜓 ↔ ¬ ∃ 𝑦 𝜒 ) )
11
10
con4bid
⊢ ( 𝜑 → ( ∃ 𝑥 𝜓 ↔ ∃ 𝑦 𝜒 ) )