| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfnfc1 |
⊢ Ⅎ 𝑥 Ⅎ 𝑥 𝐴 |
| 2 |
|
nfv |
⊢ Ⅎ 𝑦 Ⅎ 𝑥 𝐴 |
| 3 |
|
nfvd |
⊢ ( Ⅎ 𝑥 𝐴 → Ⅎ 𝑦 ¬ 𝑥 = 𝐴 ) |
| 4 |
|
nfcvd |
⊢ ( Ⅎ 𝑥 𝐴 → Ⅎ 𝑥 𝑦 ) |
| 5 |
|
id |
⊢ ( Ⅎ 𝑥 𝐴 → Ⅎ 𝑥 𝐴 ) |
| 6 |
4 5
|
nfeqd |
⊢ ( Ⅎ 𝑥 𝐴 → Ⅎ 𝑥 𝑦 = 𝐴 ) |
| 7 |
6
|
nfnd |
⊢ ( Ⅎ 𝑥 𝐴 → Ⅎ 𝑥 ¬ 𝑦 = 𝐴 ) |
| 8 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 = 𝐴 ↔ 𝑦 = 𝐴 ) ) |
| 9 |
8
|
notbid |
⊢ ( 𝑥 = 𝑦 → ( ¬ 𝑥 = 𝐴 ↔ ¬ 𝑦 = 𝐴 ) ) |
| 10 |
9
|
a1i |
⊢ ( Ⅎ 𝑥 𝐴 → ( 𝑥 = 𝑦 → ( ¬ 𝑥 = 𝐴 ↔ ¬ 𝑦 = 𝐴 ) ) ) |
| 11 |
1 2 3 7 10
|
cbv2w |
⊢ ( Ⅎ 𝑥 𝐴 → ( ∀ 𝑥 ¬ 𝑥 = 𝐴 ↔ ∀ 𝑦 ¬ 𝑦 = 𝐴 ) ) |
| 12 |
|
alnex |
⊢ ( ∀ 𝑥 ¬ 𝑥 = 𝐴 ↔ ¬ ∃ 𝑥 𝑥 = 𝐴 ) |
| 13 |
|
alnex |
⊢ ( ∀ 𝑦 ¬ 𝑦 = 𝐴 ↔ ¬ ∃ 𝑦 𝑦 = 𝐴 ) |
| 14 |
11 12 13
|
3bitr3g |
⊢ ( Ⅎ 𝑥 𝐴 → ( ¬ ∃ 𝑥 𝑥 = 𝐴 ↔ ¬ ∃ 𝑦 𝑦 = 𝐴 ) ) |
| 15 |
14
|
con4bid |
⊢ ( Ⅎ 𝑥 𝐴 → ( ∃ 𝑥 𝑥 = 𝐴 ↔ ∃ 𝑦 𝑦 = 𝐴 ) ) |