Description: Change bound variable between domain and range of function. (Contributed by NM, 23-Feb-1997)
Ref | Expression | ||
---|---|---|---|
Hypothesis | cbvfo.1 | ⊢ ( ( 𝐹 ‘ 𝑥 ) = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
Assertion | cbvexfo | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑦 ∈ 𝐵 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvfo.1 | ⊢ ( ( 𝐹 ‘ 𝑥 ) = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
2 | 1 | notbid | ⊢ ( ( 𝐹 ‘ 𝑥 ) = 𝑦 → ( ¬ 𝜑 ↔ ¬ 𝜓 ) ) |
3 | 2 | cbvfo | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → ( ∀ 𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∀ 𝑦 ∈ 𝐵 ¬ 𝜓 ) ) |
4 | 3 | notbid | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → ( ¬ ∀ 𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∀ 𝑦 ∈ 𝐵 ¬ 𝜓 ) ) |
5 | dfrex2 | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀ 𝑥 ∈ 𝐴 ¬ 𝜑 ) | |
6 | dfrex2 | ⊢ ( ∃ 𝑦 ∈ 𝐵 𝜓 ↔ ¬ ∀ 𝑦 ∈ 𝐵 ¬ 𝜓 ) | |
7 | 4 5 6 | 3bitr4g | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑦 ∈ 𝐵 𝜓 ) ) |