Metamath Proof Explorer


Theorem cbvexfo

Description: Change bound variable between domain and range of function. (Contributed by NM, 23-Feb-1997)

Ref Expression
Hypothesis cbvfo.1 ( ( 𝐹𝑥 ) = 𝑦 → ( 𝜑𝜓 ) )
Assertion cbvexfo ( 𝐹 : 𝐴onto𝐵 → ( ∃ 𝑥𝐴 𝜑 ↔ ∃ 𝑦𝐵 𝜓 ) )

Proof

Step Hyp Ref Expression
1 cbvfo.1 ( ( 𝐹𝑥 ) = 𝑦 → ( 𝜑𝜓 ) )
2 1 notbid ( ( 𝐹𝑥 ) = 𝑦 → ( ¬ 𝜑 ↔ ¬ 𝜓 ) )
3 2 cbvfo ( 𝐹 : 𝐴onto𝐵 → ( ∀ 𝑥𝐴 ¬ 𝜑 ↔ ∀ 𝑦𝐵 ¬ 𝜓 ) )
4 3 notbid ( 𝐹 : 𝐴onto𝐵 → ( ¬ ∀ 𝑥𝐴 ¬ 𝜑 ↔ ¬ ∀ 𝑦𝐵 ¬ 𝜓 ) )
5 dfrex2 ( ∃ 𝑥𝐴 𝜑 ↔ ¬ ∀ 𝑥𝐴 ¬ 𝜑 )
6 dfrex2 ( ∃ 𝑦𝐵 𝜓 ↔ ¬ ∀ 𝑦𝐵 ¬ 𝜓 )
7 4 5 6 3bitr4g ( 𝐹 : 𝐴onto𝐵 → ( ∃ 𝑥𝐴 𝜑 ↔ ∃ 𝑦𝐵 𝜓 ) )