Metamath Proof Explorer


Theorem cbvexvw

Description: Change bound variable. Uses only Tarski's FOL axiom schemes. See cbvexv for a version with fewer disjoint variable conditions but requiring more axioms. (Contributed by NM, 19-Apr-2017)

Ref Expression
Hypothesis cbvalvw.1 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
Assertion cbvexvw ( ∃ 𝑥 𝜑 ↔ ∃ 𝑦 𝜓 )

Proof

Step Hyp Ref Expression
1 cbvalvw.1 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
2 1 notbid ( 𝑥 = 𝑦 → ( ¬ 𝜑 ↔ ¬ 𝜓 ) )
3 2 cbvalvw ( ∀ 𝑥 ¬ 𝜑 ↔ ∀ 𝑦 ¬ 𝜓 )
4 3 notbii ( ¬ ∀ 𝑥 ¬ 𝜑 ↔ ¬ ∀ 𝑦 ¬ 𝜓 )
5 df-ex ( ∃ 𝑥 𝜑 ↔ ¬ ∀ 𝑥 ¬ 𝜑 )
6 df-ex ( ∃ 𝑦 𝜓 ↔ ¬ ∀ 𝑦 ¬ 𝜓 )
7 4 5 6 3bitr4i ( ∃ 𝑥 𝜑 ↔ ∃ 𝑦 𝜓 )