Metamath Proof Explorer


Theorem cbviing

Description: Change bound variables in an indexed intersection. Usage of this theorem is discouraged because it depends on ax-13 . See cbviin for a version with more disjoint variable conditions, but not requiring ax-13 . (Contributed by Jeff Hankins, 26-Aug-2009) (Revised by Mario Carneiro, 14-Oct-2016) (New usage is discouraged.)

Ref Expression
Hypotheses cbviung.1 𝑦 𝐵
cbviung.2 𝑥 𝐶
cbviung.3 ( 𝑥 = 𝑦𝐵 = 𝐶 )
Assertion cbviing 𝑥𝐴 𝐵 = 𝑦𝐴 𝐶

Proof

Step Hyp Ref Expression
1 cbviung.1 𝑦 𝐵
2 cbviung.2 𝑥 𝐶
3 cbviung.3 ( 𝑥 = 𝑦𝐵 = 𝐶 )
4 1 nfcri 𝑦 𝑧𝐵
5 2 nfcri 𝑥 𝑧𝐶
6 3 eleq2d ( 𝑥 = 𝑦 → ( 𝑧𝐵𝑧𝐶 ) )
7 4 5 6 cbvral ( ∀ 𝑥𝐴 𝑧𝐵 ↔ ∀ 𝑦𝐴 𝑧𝐶 )
8 7 abbii { 𝑧 ∣ ∀ 𝑥𝐴 𝑧𝐵 } = { 𝑧 ∣ ∀ 𝑦𝐴 𝑧𝐶 }
9 df-iin 𝑥𝐴 𝐵 = { 𝑧 ∣ ∀ 𝑥𝐴 𝑧𝐵 }
10 df-iin 𝑦𝐴 𝐶 = { 𝑧 ∣ ∀ 𝑦𝐴 𝑧𝐶 }
11 8 9 10 3eqtr4i 𝑥𝐴 𝐵 = 𝑦𝐴 𝐶