| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cbviota.1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝜑  ↔  𝜓 ) ) | 
						
							| 2 |  | cbviota.2 | ⊢ Ⅎ 𝑦 𝜑 | 
						
							| 3 |  | cbviota.3 | ⊢ Ⅎ 𝑥 𝜓 | 
						
							| 4 |  | nfv | ⊢ Ⅎ 𝑧 ( 𝜑  ↔  𝑥  =  𝑤 ) | 
						
							| 5 |  | nfs1v | ⊢ Ⅎ 𝑥 [ 𝑧  /  𝑥 ] 𝜑 | 
						
							| 6 |  | nfv | ⊢ Ⅎ 𝑥 𝑧  =  𝑤 | 
						
							| 7 | 5 6 | nfbi | ⊢ Ⅎ 𝑥 ( [ 𝑧  /  𝑥 ] 𝜑  ↔  𝑧  =  𝑤 ) | 
						
							| 8 |  | sbequ12 | ⊢ ( 𝑥  =  𝑧  →  ( 𝜑  ↔  [ 𝑧  /  𝑥 ] 𝜑 ) ) | 
						
							| 9 |  | equequ1 | ⊢ ( 𝑥  =  𝑧  →  ( 𝑥  =  𝑤  ↔  𝑧  =  𝑤 ) ) | 
						
							| 10 | 8 9 | bibi12d | ⊢ ( 𝑥  =  𝑧  →  ( ( 𝜑  ↔  𝑥  =  𝑤 )  ↔  ( [ 𝑧  /  𝑥 ] 𝜑  ↔  𝑧  =  𝑤 ) ) ) | 
						
							| 11 | 4 7 10 | cbvalv1 | ⊢ ( ∀ 𝑥 ( 𝜑  ↔  𝑥  =  𝑤 )  ↔  ∀ 𝑧 ( [ 𝑧  /  𝑥 ] 𝜑  ↔  𝑧  =  𝑤 ) ) | 
						
							| 12 | 2 | nfsb | ⊢ Ⅎ 𝑦 [ 𝑧  /  𝑥 ] 𝜑 | 
						
							| 13 |  | nfv | ⊢ Ⅎ 𝑦 𝑧  =  𝑤 | 
						
							| 14 | 12 13 | nfbi | ⊢ Ⅎ 𝑦 ( [ 𝑧  /  𝑥 ] 𝜑  ↔  𝑧  =  𝑤 ) | 
						
							| 15 |  | nfv | ⊢ Ⅎ 𝑧 ( 𝜓  ↔  𝑦  =  𝑤 ) | 
						
							| 16 |  | sbequ | ⊢ ( 𝑧  =  𝑦  →  ( [ 𝑧  /  𝑥 ] 𝜑  ↔  [ 𝑦  /  𝑥 ] 𝜑 ) ) | 
						
							| 17 | 3 1 | sbie | ⊢ ( [ 𝑦  /  𝑥 ] 𝜑  ↔  𝜓 ) | 
						
							| 18 | 16 17 | bitrdi | ⊢ ( 𝑧  =  𝑦  →  ( [ 𝑧  /  𝑥 ] 𝜑  ↔  𝜓 ) ) | 
						
							| 19 |  | equequ1 | ⊢ ( 𝑧  =  𝑦  →  ( 𝑧  =  𝑤  ↔  𝑦  =  𝑤 ) ) | 
						
							| 20 | 18 19 | bibi12d | ⊢ ( 𝑧  =  𝑦  →  ( ( [ 𝑧  /  𝑥 ] 𝜑  ↔  𝑧  =  𝑤 )  ↔  ( 𝜓  ↔  𝑦  =  𝑤 ) ) ) | 
						
							| 21 | 14 15 20 | cbvalv1 | ⊢ ( ∀ 𝑧 ( [ 𝑧  /  𝑥 ] 𝜑  ↔  𝑧  =  𝑤 )  ↔  ∀ 𝑦 ( 𝜓  ↔  𝑦  =  𝑤 ) ) | 
						
							| 22 | 11 21 | bitri | ⊢ ( ∀ 𝑥 ( 𝜑  ↔  𝑥  =  𝑤 )  ↔  ∀ 𝑦 ( 𝜓  ↔  𝑦  =  𝑤 ) ) | 
						
							| 23 | 22 | abbii | ⊢ { 𝑤  ∣  ∀ 𝑥 ( 𝜑  ↔  𝑥  =  𝑤 ) }  =  { 𝑤  ∣  ∀ 𝑦 ( 𝜓  ↔  𝑦  =  𝑤 ) } | 
						
							| 24 | 23 | unieqi | ⊢ ∪  { 𝑤  ∣  ∀ 𝑥 ( 𝜑  ↔  𝑥  =  𝑤 ) }  =  ∪  { 𝑤  ∣  ∀ 𝑦 ( 𝜓  ↔  𝑦  =  𝑤 ) } | 
						
							| 25 |  | dfiota2 | ⊢ ( ℩ 𝑥 𝜑 )  =  ∪  { 𝑤  ∣  ∀ 𝑥 ( 𝜑  ↔  𝑥  =  𝑤 ) } | 
						
							| 26 |  | dfiota2 | ⊢ ( ℩ 𝑦 𝜓 )  =  ∪  { 𝑤  ∣  ∀ 𝑦 ( 𝜓  ↔  𝑦  =  𝑤 ) } | 
						
							| 27 | 24 25 26 | 3eqtr4i | ⊢ ( ℩ 𝑥 𝜑 )  =  ( ℩ 𝑦 𝜓 ) |