Metamath Proof Explorer


Theorem cbviotavw

Description: Change bound variables in a description binder. Version of cbviotav with a disjoint variable condition, which requires fewer axioms . (Contributed by Andrew Salmon, 1-Aug-2011) (Revised by Gino Giotto, 30-Sep-2024)

Ref Expression
Hypothesis cbviotavw.1 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
Assertion cbviotavw ( ℩ 𝑥 𝜑 ) = ( ℩ 𝑦 𝜓 )

Proof

Step Hyp Ref Expression
1 cbviotavw.1 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
2 1 cbvabv { 𝑥𝜑 } = { 𝑦𝜓 }
3 2 eqeq1i ( { 𝑥𝜑 } = { 𝑧 } ↔ { 𝑦𝜓 } = { 𝑧 } )
4 3 abbii { 𝑧 ∣ { 𝑥𝜑 } = { 𝑧 } } = { 𝑧 ∣ { 𝑦𝜓 } = { 𝑧 } }
5 4 unieqi { 𝑧 ∣ { 𝑥𝜑 } = { 𝑧 } } = { 𝑧 ∣ { 𝑦𝜓 } = { 𝑧 } }
6 df-iota ( ℩ 𝑥 𝜑 ) = { 𝑧 ∣ { 𝑥𝜑 } = { 𝑧 } }
7 df-iota ( ℩ 𝑦 𝜓 ) = { 𝑧 ∣ { 𝑦𝜓 } = { 𝑧 } }
8 5 6 7 3eqtr4i ( ℩ 𝑥 𝜑 ) = ( ℩ 𝑦 𝜓 )