| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cbviotaw.1 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) |
| 2 |
|
cbviotaw.2 |
⊢ Ⅎ 𝑦 𝜑 |
| 3 |
|
cbviotaw.3 |
⊢ Ⅎ 𝑥 𝜓 |
| 4 |
|
nfv |
⊢ Ⅎ 𝑧 ( 𝜑 ↔ 𝑥 = 𝑤 ) |
| 5 |
|
nfs1v |
⊢ Ⅎ 𝑥 [ 𝑧 / 𝑥 ] 𝜑 |
| 6 |
|
nfv |
⊢ Ⅎ 𝑥 𝑧 = 𝑤 |
| 7 |
5 6
|
nfbi |
⊢ Ⅎ 𝑥 ( [ 𝑧 / 𝑥 ] 𝜑 ↔ 𝑧 = 𝑤 ) |
| 8 |
|
sbequ12 |
⊢ ( 𝑥 = 𝑧 → ( 𝜑 ↔ [ 𝑧 / 𝑥 ] 𝜑 ) ) |
| 9 |
|
equequ1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 = 𝑤 ↔ 𝑧 = 𝑤 ) ) |
| 10 |
8 9
|
bibi12d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝜑 ↔ 𝑥 = 𝑤 ) ↔ ( [ 𝑧 / 𝑥 ] 𝜑 ↔ 𝑧 = 𝑤 ) ) ) |
| 11 |
4 7 10
|
cbvalv1 |
⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑤 ) ↔ ∀ 𝑧 ( [ 𝑧 / 𝑥 ] 𝜑 ↔ 𝑧 = 𝑤 ) ) |
| 12 |
2
|
nfsbv |
⊢ Ⅎ 𝑦 [ 𝑧 / 𝑥 ] 𝜑 |
| 13 |
|
nfv |
⊢ Ⅎ 𝑦 𝑧 = 𝑤 |
| 14 |
12 13
|
nfbi |
⊢ Ⅎ 𝑦 ( [ 𝑧 / 𝑥 ] 𝜑 ↔ 𝑧 = 𝑤 ) |
| 15 |
|
nfv |
⊢ Ⅎ 𝑧 ( 𝜓 ↔ 𝑦 = 𝑤 ) |
| 16 |
3 1
|
sbhypf |
⊢ ( 𝑧 = 𝑦 → ( [ 𝑧 / 𝑥 ] 𝜑 ↔ 𝜓 ) ) |
| 17 |
|
equequ1 |
⊢ ( 𝑧 = 𝑦 → ( 𝑧 = 𝑤 ↔ 𝑦 = 𝑤 ) ) |
| 18 |
16 17
|
bibi12d |
⊢ ( 𝑧 = 𝑦 → ( ( [ 𝑧 / 𝑥 ] 𝜑 ↔ 𝑧 = 𝑤 ) ↔ ( 𝜓 ↔ 𝑦 = 𝑤 ) ) ) |
| 19 |
14 15 18
|
cbvalv1 |
⊢ ( ∀ 𝑧 ( [ 𝑧 / 𝑥 ] 𝜑 ↔ 𝑧 = 𝑤 ) ↔ ∀ 𝑦 ( 𝜓 ↔ 𝑦 = 𝑤 ) ) |
| 20 |
11 19
|
bitri |
⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑤 ) ↔ ∀ 𝑦 ( 𝜓 ↔ 𝑦 = 𝑤 ) ) |
| 21 |
20
|
abbii |
⊢ { 𝑤 ∣ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑤 ) } = { 𝑤 ∣ ∀ 𝑦 ( 𝜓 ↔ 𝑦 = 𝑤 ) } |
| 22 |
21
|
unieqi |
⊢ ∪ { 𝑤 ∣ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑤 ) } = ∪ { 𝑤 ∣ ∀ 𝑦 ( 𝜓 ↔ 𝑦 = 𝑤 ) } |
| 23 |
|
dfiota2 |
⊢ ( ℩ 𝑥 𝜑 ) = ∪ { 𝑤 ∣ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑤 ) } |
| 24 |
|
dfiota2 |
⊢ ( ℩ 𝑦 𝜓 ) = ∪ { 𝑤 ∣ ∀ 𝑦 ( 𝜓 ↔ 𝑦 = 𝑤 ) } |
| 25 |
22 23 24
|
3eqtr4i |
⊢ ( ℩ 𝑥 𝜑 ) = ( ℩ 𝑦 𝜓 ) |